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CHAPTER I. INTRODUCTION 

Nonpoint source (NFS) pollution of ground and surface water resources is a 

national concern. Agriculture is the major source of nonpoint contamination of rivers 

and lakes (USEPA 1992). More than 60 percent of pollution of these water bodies is 

from sediment, nutrients, and pesticides. Because of the continuing NFS pollution, and 

despite more than a decade of policy, research, and intervention, the relation between 

agricultural production and environmental quality is still the subject of ongoing debate. 

Encouraged by the federal commodity programs, agricultural production is becoming 

chemically intensive and less sustainable. Furthermore production is being extended 

into marginal and environmentally susceptible lands at an increasing rate. These are 

but examples of the type of conflicts between agriculture and environment. To 

address these conflicts, farm policies have been reoriented to reduce the environmental 

impacts of agricultural production (Reichelderfer 1990, Johnson et al. 1990). The 

Food Security Act (FSA) of 1985 was a timely move in terms of farm legislation and 

USDA environmental policy.^ 

The conflicts among environmental objectives, such as soil erosion and 

agricultural chemical pollution control, makes the integrated economic and 

environmental management more difficult. Agricultural nonpoint source pollution 

control policies targeted to a specific pollutant may negatively impact other 

environmental systems. For instance, conservation tillage, aimed at controlling soil 

^ The two major policies proposed in the FSA of 1985, Conservation Compliance 
and the Conservation Reserve Frograms, tie program eligibility with soil conservation 
and are examples of coordination. 
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erosion, may substitute chemical weed control for tillage. Increased chemical use and 

greater surface water retention with conservation tillage may lead to increased 

chemical loading. Groundwater, in particular, is more vulnerable because of the 

increased chances for leaching (Hinkle 1983), suggesting that certain soil conservation 

policy/measures may lead to increased groundwater pollution. 

On the other hand, water quality policy, such as a regulatory standard on the 

allowable maximum contaminant level (MCL) of a target pollutant, may shift cultivation 

practices away from chemical-intensive conservation tillage. These shifts may lead to 

increased soil erosion, surface runoff, and sediment loading suggesting a conflict 

between water quality and soil conservation policy. Ground and surface water quality 

are multidimensional described by attributes, such as sediment, nutrient, and chemical 

content. Therefore, evaluations of water quality and NFS pollution policies must be 

carried out in a comprehensive framework capable of accommodating the unfavorable 

tradeoffs and unwanted conflicts of alternative interventions or measures. Lee and 

Lovejoy (1991; pp. 61) succinctly spell out the need for an integrated assessment of 

environmental effects from agricultural production: 

Society's new demands for a cleaner environment coupled with the 
traditional demands for productivity enhancement will require a multi-
disciplinary research effort to address these complex issues and 
tradeoffs. Therefore, a challenge for future research is to consider the 
simultaneous impact of crop production practices on multiple factors 
from the vast array of environmental parameters. A contemporary 
example would be for our research to consider both soil conservation and 
water quality impacts of alternative production systems and alternative 
policies. 

Theoretical results of evidence on agricultural and environmental policy conflicts 

is inconclusive, at best (Leathers and Quiggin 1991). Answers to policy issues involve 
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empirical questions and are crucial for successful NFS pollution policy. Sharp and 

Bromley (1979) were among the first to conceptualize the problem of coordinating 

targeted nonpoint controls. Milon (1986) suggested an analytical framework to 

address the interdependent risks created by nonpoint externalities. But, this research 

effort has remained more at the conceptualization stage for the past decade. Lack of 

data and research methods and tools, were primary reasons for the limited empirical 

research and applications of the targeting results in policy contexts. 

Mounting environmental concerns and problems of sustainable agricultural 

productivity increases linked to improvements in environmental quality underlie the 

urgent need for added research and methods for supporting improved integrated 

economic and environmental management. With the growing focus on ecosystems and 

policy tradeoffs the tools for analysis must have the capacity to address regional as 

well as local and farm level management. To date, the CEEPES (Comprehensive 

Economic and Environmental Policy Evaluation System) developed jointly by the Center 

for Agricultural and Rural Development, Iowa State University and the 

U.S.Environmental Protection Agency (USEPA) is the most comprehensive analytical 

system available for applied regional scale policy analysis (Johnson et al. 1990, 

Bouzaher and Shogren 1993). 

Integrating economic and environmental systems capable of comprehensive 

public policy evaluation typically incorporate multiple objectives. Particularly for 

agricultural NPS pollution and water quality problems, policy issues involve multiple 

economic and water quality objectives. In an integrated system, sometimes in addition 

to them, there are also often several competing environmental objectives. Invariably, 
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these objectives conflict with one another and the policy choices involve significant 

tradeoffs. Also these multiple objectives are not independent. Thus, there may be 

significant gains from simultaneous consideration of all these objectives in a multiple 

objective framework instead of a piecemeal evaluation. A piecemeal evaluation that 

redirects the crop production and management decisions in favor of achieving a single 

objective may worsen the desirable levels of other objectives. 

Given the current state of heightened environmental concern, the single 

objective approach is limited because it must intrinsically accord less importance to 

economic or environmental objective. Also, because of certain characteristics from the 

underlying real processes, which are interdependent, and the inherent uncertainty in 

virtually all natural resource systems, the single objective approach has major 

drawbacks as to formulation for such problems. This research will develop a 

conceptual framework for integrated agricultural economic and environmental modeling 

using multicriteria decision making approach grounded in multiattribute utility and social 

welfare theory. The empirical analysis and policy exercise is on a regional scale defined 

for an environmentally meaningful geographical unit (watershed). However, for more 

meaningful measurement of production and resource quality parameters at the regional 

scale, models should adequately capture the spatial heterogeneity of these parameters 

as well (Braden et al. 1989). 

Therefore, a major challenge of the policy exercise is in obtaining the excessive 

site-specific data for quantifying the selected environmental attributes. Also, a simple 

and scientifically valid statistical tool for extrapolation and aggregation of these site-

specific attributes to regional levels is required. The tool applied is called the 
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Metamodel, a statistically validated response function fitted to the biogeophysical 

outputs from calibrated mathematical simulation models (Bouzaher et al. 1993). Using 

mathematical simulation models to simulate the complex processes is gaining 

popularity among research community for NFS evaluations (Ellis et al. 1991). Studies 

by Anderson et al. (1985), Milon (1987), Taylor (1991), Setia and Piper (1992), and 

Crutchfield (1992) have all used simulation models for analysis of agricultural NPS 

pollution. These studies, however, have tied the simulation models directly to the 

economic specification resulting in limited scope and expensive computations if 

alternative policy scenarios are to be evaluated. 

Conducting site-specific field experiments at various locations within a region to 

obtain detailed data is an immense task. Hence, calibrated crop-growth and resource-

impact simulation models have come to be applied to augment this extensive task. 

Mathematical process models which can be used to estimate nonpoint impacts of 

alternative production and management practices, ex ante, are available. These models 

facilitate site-specific evaluations based on computer simulations of real-life processes. 

Combining the simulation systems with statistical design and the metamodeling 

technique, spatial and technical heterogeneity can be captured with reasonable 

confidence and at reduced cost. Furthermore, these spatial results can be statistically 

aggregated to regional levels—the appropriate scale for most resource policy analysis. 

The metamodeling approach is robust, enabling "efficient" integration of process 

models in economic analysis. Efficient in the sense that the evaluation of alternative 

policies can be accomplished by extrapolating the estimated metamodels for the new 

sets of underlying parameters without having to resimulate the system. Additionally, 
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the multivariate statistical procedures applied permit joint estimation of multimedia 

(groundwater and surface water) attributes, which is not possible with the currently 

available simulation models (Clendening et al. 1990). Therefore, the metamodeling 

approach is a major research innovation in the economic analysis of environmental 

policy. Estimating simple response functions to explain the output from complex 

process models is a powerful tool that simplifies the burden of computation implied by 

this integrated policy evaluation system. 

The comprehensive multiobjective decision making model is empirically verified 

for a specific watershed in the Corn Belt. Specifically, the hydrologie area representing 

the water resources aggregate sub area 703 (WRC 1970) is the area of study. This 

aggregate sub area is commonly referred to as producing area 41 (PA 41) and it 

comprises most of central and eastern Iowa. This is an agriculturally important area 

and a major watershed drained by the two major river systems, Mississippi and 

Des Moines river systems. It is important both for crop production and nonpoint 

pollution potential. This watershed comprises nearly 25 million acres of cropland (6% 

of the national cropped area). In 1990 it produced $4.3 billion worth of crops, 

representing about 5% of total U.S. crop receipts. Corn grain and soybeans are the 

two major crops in the area accounting for nearly $4.1 billion and 21 million acres. 

In 1990, nearly 3,048 million pounds of commercial fertilizers and 51 million 

pounds of pesticide active ingredients (a.i.) were used on major crops grown in Iowa 

(USDA 1991). On an average, 127 pounds of nitrogen and 58 pounds of phosphorus 

were applied per acre per crop year. Nearly 96 percent of corn acres is treated with 

atrazine, a major corn and sorghum herbicide, at an average rate of 1.27 pounds a.i. 
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per acre per crop year. With such intensive chemical use the potential for agricultural 

NFS pollution is significant. The intensive production and chemical use coupled with 

the existence of diverse ecosystems makes this an ideal watershed for this study 

examining the potential tradeoffs of economic-environmental policies. 

The Mississippi river which flows through the watershed serves as a major 

carrier of surface water pollutants (sediment, nutrients, and chemicals) posing a 

potential threat to downstream. The U.S. Geological Survey (1991) reported that 27% 

of the samples tested from the river showed concentrations of atrazine exceeding the 

maximum contaminant level for drinking water. A similar study for groundwater, 

reported that in Iowa 24% of the municipal wells had detectable concentrations of 

atrazine. Madison and Brunett (1984) also reported that 5-10% of the wells sampled 

in Iowa showed Nitrate-Nitrogen (NO3-N) concentrations exceeding the MCL (10 mg/L). 

The rate of eutrophication of surface water bodies is suspected to have been 

accelerated by the NFS loading of phosphorous. The annual rate of sediment loading 

and the associated costs of desilting is also of concern. Craig and Anderson (1992) 

reported that suspended sediments in the Mississippi river, as it leaves Iowa, increased 

to 240 mg/L from 18 mg/L at a point East of Minneapolis. In the same stretch of the 

river, nitrogen and phosphorous loads increased to 1.0 and 0.28 mg/L, respectively, 

from 0.9 and 0.13 mg/L. 

The empirical application in this thesis will test the following general hypothesis: 

"Given that environmental externalities are products of complex physical processes and 

interactions, influenced by management and production decisions, evaluations of 
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resource and environmental protection policies should be accomplished in a 

comprehensive framework to minimize conflicts and maximize social welfare gains." 

The intent is to develop and implement a framework for policy analysis that provides 

better information for understanding why some environmental problems persist despite 

evolving policies, technologies, and market incentives. This research evolves from the 

CEEPES framework, which is an operational system addressing policy questions 

concerning atrazine, and extends it to address the nutrient and soil erosion elements of 

the water quality vector. The specific objectives of the study are: 

1. to more fully motivate the importance of incorporating environmental 

externalities in agricultural production decisions; 

2. to demonstrate that piecemeal and media specific NFS pollution policies are 

suboptimal since they ignore the complex physical process interactions; 

3. to develop a framework integrating economic and environmental policies, 

using a multiobjective decision system, directly motivated by multiattribute 

utility and social welfare theories; 

4. to show that metamodeling is a robust tool for estimating reduced form 

equations for multimedia environmental impacts from soil erosion and chemical 

fate and transport, capturing both spatial and technical heterogeneity thus 

allowing regionalization and aggregation; and 

5. to develop an integrated multicriteria decision model for a specific Corn Belt 

watershed, apply the integrated economic and environmental policy model for 

understanding the tradeoffs and optimum choices. 

The thesis is organized as follows. 
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Chapter I gives a general background and sets out the objectives and scope of 

the study. Chapter II reviews issues concerning agricultural NFS pollution assessment 

and multicriteria optimization principles and techniques. In Chapter III, using a social 

utility function the consequences of piecemeal approach to water quality problem are 

derived and the tradeoff between soil and water quality is illustrated with this model. 

A theoretical multiobjective decision model is developed based on social welfare and 

multiattribute utility theories. Based on the principles of multidisciplinary integration, a 

conceptual framework is suggested to integrate the economic-environmental models. 

In Chapter IV description of the empirical tools, sampling procedures and 

simulation experiment design, data and technology sets, and spatial aggregation 

procedures are provided, including a description of the interface between the physical 

process model and the economic behavioral model provided by metamodels. The major 

crops grown in this watershed, such as corn, soybeans, oats, winter wheat, hay, and 

sorghum, are included in this analysis. The environmental indicators modeled are soil 

erosion, nitrate-N in runoff and percolate, and atrazine in runoff and percolate. Besides 

conventional tillage, soil conserving tillage systems, such as reduced till and no-till 

were modeled to study the impacts of tillage on environmental loading. Chapter V 

summarizes the results. The first section summarizes the physical model results of 

long term average values of environmental indicators, briefly describes metamodel 

development process and the estimated metamodels for each of the environmental 

indicators. The second section elaborates the alternative policy scenarios and the 

economic and environmental impacts and tradeoffs as indicated by the multiple 

objective scenario analysis. 
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The spatial distribution of various environmental indicators are valuable 

information for targeting the policies to problem areas within this watershed. Since the 

data on soil, hydrology, weather, and production practices are specific to this 

watershed, the results are not directly applicable to other areas. But, the results could 

be generalized to areas with similar spatial attributes. Long term average nitrate-N 

concentration in surface water is estimated at 5.3 ppm, which is close to the actual 

measurements in the region, 5.6 ppm. Likewise, the predicted long term average 

leaching losses of nitrate-N is within the range of actual measurements from sample 

wells and near surface aquifers. 

The results from simulating four different policy scenarios, representing soil 

quality (SI), surface water quality (S2), groundwater quality (S3), and a comprehensive 

scenario addressing soil and water quality jointly (S4) are discussed. Major findings 

and conclusions of the policy simulation exercise are: (i) there is significant tradeoff 

between the economic and environmental goals and, even between the environmental 

goals, therefore a comprehensive analysis with reasonable compromise will give an 

ideal solution; (ii) a soil loss reduction goal of not exceeding the 2T level will reduce the 

net returns by 21 %, which translates into $1.88 per ton of soil. Also, this policy 

resulted in increased impairments to groundwater quality; and (iii) a multiobjective 

scenario minimizing soil loss to 2T levels and not allowing nitrate-N and atrazine 

leaching to exceed the baseline resulted in 43% decrease in returns, but both surface 

and groundwater quality improved relative to baseline. 
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CHAPTER II. LITERATURE REVIEW 

Agricultural Pollution Externality and Social Optimum 

Agriculture Is the single largest contributor of sediment and chemical pollutants 

to the major water bodies, including groundwater. Agricultural production decisions 

and the physical environment in which the effects of these decisions are realized 

influence soil erosion, surface runoff, and subsurface leaching, and are reflected as soil 

and water quality problems. Phipps (1991) and Lee and Lovejoy (1991) identify 

potential environmental problems related to agriculture. The pollution from agricultural 

runoff and leaching is in general a nonpoint externality. An externality may arise when 

there exists a good for which market / price guided allocation fails. As a result of such 

market failures and price distortions private decisions do not produce a socially 

desirable allocation of resources (Baumol and Gates 1975). 

Nonpoint externality is different from point externality, in that it is not 

economical to continuously monitor emissions on a wide spread scale. Furthermore the 

technical problems are abound in measuring nonpoint emissions. The uncertainty 

introduced by weather and hydrologie conditions coupled with spatial heterogeneity 

makes monitoring on a regional scale impractical. Griffin and Bromley (1982) give the 

following definition, "A nonpoint externality exists whenever the externality 

contributions of individual economic agents can not be practically measured by direct 

monitoring." Ever since Griffin and Bromley suggested a theoretical framework for 

addressing nonpoint externality and policy instruments to control it, several theoretical 

and empirical works were published (Shortle and Dunn 1986, Milon 1987, Braden et al. 
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1989, Zeitounni 1990, Weinberg 1991, Setia and Piper 1992, Zhu et al. 1993). Two 

major conclusion of these studies are: (1) agricultural nonpoint source pollution is 

heterogenous requiring evaluation at a site-specific level, preferably the soil level; and 

(2) the pollutants are related to one another and as a result a simultaneous evaluation 

is required if the ultimate goal is to reduce all pollutants in the resource media. 

The first major conclusion from these diverse studies is that the relative 

performance of alternative soil-conserving and water quality-preserving production 

systems is site-specific. Therefore, any evaluation of these systems at a regional or 

watershed level should consider the spatial heterogeneity. That is, to determine the 

sustainability of alternative tillage and management systems, spatial factors such as 

climate, hydrology, soil type, and the production and management factors and their 

interactions need to be fully captured. However, conducting site-specific field 

experiments at various sites within a region or monitoring each field is an immense 

task, hence calibrated crop-growth and resource-impact simulation models can play a 

important role. Mathematical models which estimate nonpoint emissions from 

alternative production and management practices, ex ante, are available to facilitate 

site-specific evaluation using computer simulation of real-life processes (Wagenet and 

Hutson 1991, Ellis et al. 1991, and Dillaha and Gale 1992). These models, however, 

have to be calibrated to the site-specific parameters before they can be used for 

prediction. Another limitation of using these models is that they are accurate only to 

within a factor of 2 or 3, and their predictions should be used with full consideration of 

these factors (Jones et al. 1991). Lastly, uncertainty exists in our comprehension of 
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physical processes and in our ability to characterize those processes quantitatively. 

Therefore, uncertainty exists in the output of any such mathematical models. 

Even though the theory recognizes the need for simultaneity in addressing 

nonpoint source pollution, as production decisions result in more thaii one pollutant 

simultaneously impacting the quality of more than one media, the empirical attempts 

were thus far piecemeal or sequential. As a result, the problem of NFS pollution 

persists despite a decade of policy and research effort. Milon 1987, Crutchfield et al. 

(1992), Yakowitz et al. (1992), Setia and Piper (1992), Wossink et al. (1992), and Zhu 

et al. (1993) are the pioneering works addressing the agricultural NFS pollution problem 

by simultaneously prescribing controls on all potential pollutants. These studies 

indicate that an evaluation of multiple soil and water quality objectives can be an 

important planning tool for designing nonpoint source controls for innovative programs 

to promote cost-effective nonpoint source regulations. Thus, the need for a 

comprehensive analysis of NFS pollution is currently gaining precedence. In 

preparation for the 1995 farm bill and the upcoming Clean water Act reauthorization 

the USDA has moved comprehensive resource policy evaluation on top of its agenda. 

Economic and Environmental Tradeoffs 

Two types of tradeoffs are recognized: (1) the tradeoffs between farm income 

support programs and environmental quality protection measures and (2) the tradeoffs 

between piecemeal environmental protection programs. To facilitate the development 

of appropriate sustainable agricultural policies, the nature of these tradeoffs need to be 

fully understood. The tradeoff between economic goal and environmental quality is a 



www.manaraa.com

14 

widely recognized and researched topic (Taylor and Frohberg 1977, Heimlich and Ogg 

1982, Milon 1987, Crutchfield et al. 1992, Setia and Piper 1992, Bouzaher and 

Shogren 1993). These studies conclude that the soil and water quality regulations 

imply shifts in cropping patterns and resource use. They also find commodity prices to 

go up as a result of such environmental regulations. 

Significant research has been done to analyze the tradeoff between economic 

efficiency and soil conservation (Fox et al. 1991). The published evidence, however, 

on the relative profitability of alternative soil-conserving systems is mixed. Studies by 

Klemme (1983), Berglund and Michalson (1981), Mikesell et al. (1988), and Setia and 

Piper (1992) all find conventional tillage systems to be profitable, relative to chisel and 

no-till systems, but more erosive. They also conclude that a farmer's choice of tillage 

systems is influenced by his or her risk taking capacity as most of the conservation 

tillage systems are risky relative to conventional tillage. Klemme evaluated net returns 

to land and management from conventional and no-till planting systems in corn. 

Conventional tillage system gave a net return of $179 per acre compared to $162 per 

acre from no-till system. Even though in a few cases soil-conserving systems tend to 

be profitable, additional gains of soil conservation can be obtained only at the expense 

of farm income. That is, the marginal cost curve is a positive and increasing function 

of soil conserved at least after a certain point. Besides income loss, there is also 

evidence that conservation systems tend to increase the potential for chemical residue 

in ground and surface waters because of increased chemical dependence of these 

systems (Milon 1987). Therefore, soil-conservation in isolation, is not the answer to 

reducing erosion without compromising on income and water quality. 
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Several studies have addressed the problem of Nitrogen (N) and Phosphorus (P) 

contamination of water resources. Swanson (1982) reviews studies addressing 

pollution caused by excessive N fertilizer and the economic impacts of alternative 

controls on N fertilizer and nitrate-N emissions. Nitrate-N is the major nonpoint 

pollution problem resulting from inorganic N-fertilizer application. Research over the 

past 10 years has shown that agriculture is the most extensive source of nitrate-N 

delivered to groundwater and surface waters (Hallberg 1987). During major rainfall 

events levels of nitrate-N exceeding the drinking water standard of 10 ppm have been 

detected in the ground and surface waters of Iowa (Keeney and DeLuca 1993). Most 

of the work done in this area used mathematical programming models, which allows 

adjustments In cropping pattern in response to regulations on N use or emissions. 

Crop substitution, mostly substituting soybean for corn, split and stress based 

application of N, reducing N rates according to seasonal soil test prescribed 

"agronomic" rates of application, and lastly taking credits for N fixed by legumes are 

some of the alternative decisions available to minimize economic impacts of N controls 

(Swanson 1982, Taylor and Frohberg 1977). Phosphorus is mostly a surface water 

problem showing up as labile (soluble) P concentration in lakes and reservoirs. Milon 

(1987) addressed the problem of controlling multiple effluents including phosphorous 

loading in ground and surface water bodies. His results suggest that the multiple 

effluent constraints significantly increase the cost of nonpoint controls but the effect 

vary by control alternative. 

A potential tradeoff resulting from fertilizer use restrictions is the shift in 

chemicals used to control pests. These shifts could either be positive or negative 
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depending on the production and management decisions and risk bearing capacity of 

the farmers. For instance, risk-averse farmers tend to substitute pesticides if policy 

regulations limit their use of fertilizers, primarily to minimize the yield risk (de Janvry 

1972, Pope and Kramer 1979). If as mentioned before, a crop substitution takes place 

substituting soybeans for corn then overall chemical use may decline. It is widely 

recognized that a corn-soybean rotation requires no insecticides and possibly less 

herbicides, because crop rotations tend to break the pest cycle. 

Modeling Economic-Environmental Decisions 

Lately, the strategy of combining simulation models with mathematical 

programming models in order to evaluate alternative resource policy scenarios has 

become the state-of-the-art technique for integrated assessment. Studies by Anderson 

et al. (1985), Milon (1987), Taylor (1991), Wossink et al. (1992), Setia and Piper 

(1992), Zhu et al. (1993) are examples of using this strategy for integrated 

assessment. A bibliographic survey of these and other related studies can be found in 

Ellis et al. (1991). Lee and Lovejoy (1991) identify problem areas where integrated 

assessment of environmental effects from agricultural production is a rule rather than 

exception. NPS pollution policy making to protect soil and water quality is one such 

area needing integrated assessment. 

Single objective linear and nonlinear programming, recursive dynamic 

programming, goal programming, and multiple criteria optimization using weighted goal 

programming and compromise programming techniques are the popular decision tools. 

Programming methods are well suited for economic and environmental research 
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because: (1) they allow relative flexibility in depicting a large array of economic and 

ecological conditions, so that many activities and restrictions can be modelled at the 

same time, (2) an explicit and efficient optimizing procedure is provided, and (3) new 

production techniques and BMPs can be easily incorporated. 

Anderson et al. (1985) propose an analytical model for water quality evaluation. 

The model specifies that the farmers select vector of inputs, which simultaneously 

maximizes net revenues and satisfies the water quality constraint that the total loading 

be less than the permissible loading (MCL). Millon (1987), using an integrated 

watershed model specified in a chance constrained framework, generates probability 

distributions for agricultural effluent in ground and surface water resulting from 

agricultural practices. In this framework, surface runoff and infiltration models were 

combined to estimate expected values and distributions of effluent for alternative 

BMPs. He concludes that evaluating multiple water quality objectives is an essential 

planning tool. 

Wossink et al. (1992) extends the linear programming optimization models 

employed in farm economics with an environmental component to analyze and evaluate 

the effects of alternative environmental policy instruments for agriculture. Yakowitz 

et al. (1992) develop a prototype decision support system, with embedded computer 

simulation models to rank feasible management practices using multiobjective theory. 

Zhu et al. (1993) developed a multiobjective dynamic programming model with the 

embedded physical simulation model to empirically evaluate the economic and 

environmental impacts of 14 agricultural management systems. Bouzaher, 

Lakshminarayan, and Johnson (1993) use a goal programming framework to analyze 
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simultaneous restrictions on soil erosion, fertilizer use, and herbicide use with the 

economic goal of achieving not less than the baseline level of profits. These studies 

suggest that multicriteria decision making model is an important planning tool for 

evaluating agricultural economic and environmental policies. 

Multicriteria Decision Methods 

Several decision methods are available to solve the vector maximization 

problem. In general, multicriteria decision methods are categorized into: 

1. Preference-Based Direct Methods: methods that use fully prespecified 

preferences and multiple objective decompositions in a multiattribute utility / 

value theory context. 

2. Mathematical Programming Based Tools: methods that do not require 

complete prespecification of the DM's preferences. They use the mathematical 

distance measures to approximate DM's preferences (Zeleny 1974). 

3. Interactive Approach: methods that use progressively revealed preferences 

from the DM (Zionts and Wallenius 1976). 

4. Outranking Relations Approach: methods that use partial ranking of the 

feasible decisions in order to help the DM (Roy 1973, Vincke 1986). 

The outranking and interactive methods require costly and frequent man-machine 

interaction requiring the DM to provide precise estimates of local tradeoffs, which is 

infeasible and expensive for public policy applications involving several objectives. 

Wallenius (1975) and Szidarovsky et al. (1986, pp 103-172) provide an overview of 

the these two approaches. 
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By standard convention, multiattribute value theory (MAVT) addresses 

deterministic problems and multiattribute utility theory (MAUT) deals with the case 

where uncertainties are present (French 1983). The axiomatic development of MAUT 

(Fishburn 1970, Keeney and Raiffa 1976) is mostly based on the von Neumann and 

Morgenstern (1947) expected utility theories. Farquhar (1977) provides an excellent 

review of these methods. In public policy problems: (1) it is hard to find a scale for 

measuring the value of each attribute, and (2) the impact of stochastic elements in 

these decision processes is very common. Therefore, specifying deterministic value 

functions is not possible, whereas MAUT is more appropriate for such problems. 

As a first step, MAUT requires that DM's preferences for each attribute 

(criterion) i, can be represented by a real-valued function U| such that the choice vector 

X is better than x' iff u,(x') > U|(x'). The existence of the utility function u, and its 

uniqueness up to a positive affine transformation, that is utility function u, preserved 

for linear transformations, are proved in the axiomatic development of utility theory. 

As a next step, these multiattribute utility functions are aggregated into an unique 

global preference function, such that the initial multicriteria problem is translated into 

an optimization problem. 

Two fundamental assumptions (additive independence and utility independence) 

are invoked to explain the aggregation of multiattribute utility functions. To explain 

these assumptions, the following notations will be used. Let the consequences of 

alternative decisions be represented by a vector of attribute levels: x = E 

X. This simply states that the consequences in X are n-tuples. That is, X is a subset 
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of the Cartesian product of other sets X = X^QXJ^M'O^X^, where X, is the set of 

possible levels for the i*** attribute. Given that I C {1,2,...,N}, I ̂  <p, define 

X* = 0)^ V i € I and X® = ® X„ V i ^ I, 

such that, 

X  =  X A @  X *  a n d  x  =  ( ^ ,  ̂ ) .  

French (1983) labels this type of restructuring of X as "decomposition". 

Additive Independence: Given a decomposition (X* X®) of X, then X* and X® are 

additively independent of each other If preferences between probability measures 

(gambles) on both X* and X®, depend only on the marginal^ gambles of X* and X®. 

Utilitv independence; Given a decomposition (X* X®) of X, then X* and X® are utility 

independent if preferences for gambles over (X, x**), conditioned on a fixed level of x** € 

X® depend only on the marginal gambles over X and are independent of those fixed 

level of x"". 

Keeney and Raiffa (1976) show that if the decompositions (X* Xf) are mutually 

utility independent for all decompositions of the n-tuples of X and the utility function 

on X is bounded, then the DM's preferences will be represented by either the 

multiplicative form, or, if additionally the additive independence condition holds for all 

decompositions, then the multiattribute utility function takes a simple additive form. 

^ If P is a probability measure defined on the set of all subsets of X, then the 
marginal probability measure of P on X, is defined as: P,(Z,) = P{(a|a £ X, a, € X,)}, v 
Z, Ç X, - -
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There are several mathematical programming methods available for generating 

nondominated solutions for multicriteria decision problem. Hwang and Masud (1979), 

Romero (1986), and Lieberman (1991) are excellent survey articles of multiobjective 

mathematical programming methods. Some of the widely used programming methods 

are the method of sequential optimization, the e-constraint method, the weighting 

method, and the distance based methods. 

The method of sequential optimization, or, the lexicographic method, as it is 

usually called, involves preemptive ranking of the objectives according to some priority 

list and solves the multiple objective problem sequentially in the order of priority (Waltz 

1967). Here, one solves the following problem at the n*** step: 

maximize f „ (x ) ,  s.t. x e X and f|(x) a i = 1,2,...,n-1, 

where //, is the optimal value of n^** objective. The motivation for this approach is that 

individuals tend to make decisions in this manner. The disadvantage of this method is 

that it cannot identify all nondominated solutions. Also, note that the solution will be 

sensitive to the preemptive ranking, and therefore caution is warranted in applying this 

method when two or more objectives are equally important. 

The g-constraint method is identical to the constraint method proposed by 

Cohon and Marks (1973). Here the DM arbitrarily chooses an objective for 

maximization subject to the regular feasibility conditions and for the remaining 

objectives fj, j;^k and j,k = 1,2, ...,q, there exists some thresholds «j. Thus the 

method involves solving for subject to the additional constraints representing these 

f|. The disadvantage of this method is in choosing and the bounds e,. In terms of 
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MAUT, this approach implies that the benefits to society from objective is a 

constant as long as the bounds e, are satisfied, and infinitely harmful otherwise. 

The weighting method, proposed by Zadeh (1963), requires the use of 

nonnegative weights (with at least one being positive), which determine the relative 

importance of the objectives. From utility theoretic perspective this implies additively 

linear utilities. The implication of additively linear utilities is that the marginal utility of 

the k*** objective is constant and is equal to the k*** weight, and the negative of the ratio 

of weights is independent of the level of objectives (constant MRS between the 

objectives). That is the willingness to tradeoff between the objectives is independent 

of the level of objectives. The formulation is as follows: 

q 
maximize c/,(x), s.t. x € X. 

1 = 1 -

These methods impose unrealistic behavioral assumptions and there is need for 

preference articulation. In a complex integrated system with several objectives, all of 

which are equally important, articulation of preference information either in the form of 

preemptive ranking or parametric weights is quite difficult. So it is absolutely 

necessary to do sensitivity analysis by parametrically varying these weights. This will 

produce a large number of nondominated solutions and to choose the best-compromise 

solution from this set of nondominated solutions is not a trivial matter. 

The distance based methods, which do not require explicit articulation of 

subjective preferences in identifying the nondominated solution set, seem to be 

appropriate for public policy problems. They use the mathematical notions of distance 
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from the "ideal" point, which is infeasible (Zeleny 1974 1982). Suppose f is the ideal 

pay-off vector (set of "ideal" simultaneous pay-off values), then the problem is, 

maximize L (/,(x), iT,'; i = 1,2,...,q) s.t. x € X, 

where L is the distance measure. The Lp-norm with p S (1,<») and the Ig-norm 

(geometric distance) are the two standard distance measures used. It can be proved 

that all these methods yield nondominated solutions (Szidarovsky et al. 1986). 

The Ip-norm, where the best-compromise solution is chosen based on a 

geometric notion of best, is stated as 

4 = Wlf", 1^ P s 00. 

If all objectives are defined as maximization objectives and f,* > f ( x )  then we can drop 

the absolute sign. Depending on how the distance metrics and the ideal point f \ are 

defined we have two different but related distance-based techniques, namely, goal 

programming and compromise programming. In the goal programming problems the 

ideal point is defined by a set of goals (target values) for the objectives, and in the 

compromise programming problem the point whose coordinates are the optimal values 

of the individual objectives is the ideal point. 

Goal programming was first presented by Charnes and Cooper (1961). It is 

used in solving wide range of problems, including agricultural resource management 

problems. Romero (1986) provides a state of the art survey of both theoretical and 

empirical applications of goal programming. Goal programming employs a minimum-
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distance notion of best, and the ^p-norm with p = 1 Is usually used. The goal 

programming problem minimizes deviation from the goals, 

A piecewise linear version of the above equation, where the positive and negative 

deviations of the i*** objective from its goal is minimized, 

q 
minimize (d,+ + d,), 

1 = 1 

s.t. f|(x) - d|^ + d| = , i = 1,2,...,q. 

The above problem can be solved by preemptive ranking of the objectives, which is a 

lexicographic method, or by a nonpreemptive weighting method. Sherali and Soyster 

(1983) show that, in the linear case, these two methods are equivalent.^ Besides the 

usual limitations of the lexicographic and the weighting methods, in goal programming 

it is possible that a set of goals may indeed lead to an inefficient solution. 

Compromise programming proposed by Zeleny (1974) minimizes the deviations 

from an ideal point, which is the solution to the problem of maximizing or minimizing 

the objectives individually. The alternative noninferior solutions are traced by varying 

the distance metric p between 1 and infinity. The parameter p plays the role of scaling 

factor between the A,, weighted sum of objectives, and 6», the largest individual 

x G X and x, d/, d," & 0. 

^ It could be demonstrated that, if a preemptive problem has an optimal solution 
then there exists a set of weights for the nonpreemptive problem, such that its optimal 
solution is identical to the preemptive optimum. 
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regret. The [.^metric corresponds to minimizing quadratic deviations. Usually the 

compromise solutions corresponding to the L2, and Z.„ metrics are determined. But 

a major weakness of this approach is that it is possible that the solutions 

corresponding to alternative choice of p may all be the same. 

Multiattribute utility theory provides the motivation for multiple objective 

problems. This analytical tool has a strong axiomatic foundation for identifying and 

improving upon one's preferences based on the premise of rational choice in decision 

making. But using MAUT as a solution method for public policy problems is hard to 

implement. Since the programming methods are compatible with a wide range of 

problems, a natural option is to choose one of these methods. It is not a good 

practice, however, to arbitrarily choose a method (Hobbs et al. 1992) because (1) it 

inappropriately match methods with problem and (2) some of these methods impose 

unrealistic assumptions. 
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CHAPTER III. MULTICRITERIA EVALUATION OF NPS POLLUTION 

The need for integrating the economic and environmental models to jointly 

evaluate agricultural chemical and soil erosion policies vis-a-vis economic efficiency 

was briefly outlined in the introduction. This chapter develops an analytical framework 

for integrated analysis of economic-environmental tradeoffs resulting from agricultural 

NPS pollution policies. The framework is developed as a multicriteria decision making 

(MCDM) problem so that economic goals and environmental policies can be jointly 

evaluated. The multicriteria evaluation is the most appropriate method for agricultural 

NPS pollution policies because of interactions among the various environmental 

processes and the influence of production decisions on these interactions. 

Before outlining the conceptual framework, a theory of agricultural pollution 

externality will be developed and the factors motivating the farmers to endogenize 

environmental goals within the firms production decisions will be discussed. Also, 

optimality of the comprehensive and simultaneous treatment of the NPS pollution 

problem, where different resource media and different pollutants are addressed jointly, 

will be demonstrated. 

Environmental Externalities and Social Optimum 

Soil and water quality problems are typical environmental externalities resulting 

from agricultural production. These externalities, which are characterized by a lack of 

market and price signals, generally result in Pareto-suboptimal allocation of resources 

from society's point of view (Baumol and Gates 1975). Usually, Pigouvian taxes (that 

is, taxes set equal to the marginal social cost of damage of the effluent, evaluated at 
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the optimum effluent level) achieve socially optimal solutions to environmental 

externality problems in the absence of other market distortions and transaction costs. 

Transaction costs are the costs associated with Information gathering and policy 

design, implementation, and monitoring. The social costs of NFS damage is generally 

unknown, therefore, quantity based regulations are usually prescribed for NFS control. 

The parallel between the price and quantity guided instruments is clearly seen from the 

following proposition, demonstrated by Baumol and Gates (1975) for point externalities 

and Griffin and Bromley (1982) for nonpoint externalities. 

Proposition 1. The social cost of damage is generally unknown, in which case effluent 
taxes assure that any predetermined effluent standard will be achieved at least cost If 
the standard is set equal to the socially optimal level, then the solution to the standards 
problem is also the optimum solution. 

Because of the difficulties in estimating social costs of damage, the later 

approach of achieving an effluent standard at least cost is used to show that the 

private profit maximizing solution is different from the social optimum when there are 

externalities. Assume that the effluent is produced by a subset of inputs. That is, the 

input vector comprises two subsets, of which one is environmentally safe input x and 

the other is polluting input z, such as tillage and chemical inputs. Consider a profit 

maximizing producer who chooses the inputs (x,z) to produce output Q. Associated 

with the input z is the effluent production D. The output and the effluent production 

functions are. 

Q = f (X ,T)  

D = d(z) 

(1) 

(2) 
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Assume >0 and >0, that the set of feasible solutions (input choices) is a closed 

convex set, and that f(.) is a twice-differentiable concave function over the feasible 

set. The effluent function d is assumed to be a continuous convex function with d, 

>0, which implies that z is a polluting input. The second-order conditions are assumed 

to hold. The usual assumptions on the effluent production function, namely that all 

effluents are discharged without any provision for storage or recycling and that 

equation (2) can adequately measure the emissions, are supposed. 

The social objective is to maximize welfare, measured as net returns to the 

producer, subject to the constraint that the emissions do not exceed the prescribed 

effluent standards*: 

Max^^^NR = p^(x,z) - p,z- p^x + //[D^ - d(z)], s.t. z,x,yi/ st 0, (3) 

where p is the price of output, p, and p* are the input prices, and // is the shadow value 

(the opportunity cost) of the emissions constraint. The nonnegativity of the choice 

variables x and z is also imposed. The first-order conditions for an interior solution are: 

P^ = PI + M (3.1) 

p/'x = Px • (3.2) 

Optimality requires that the value of the marginal product for each input be set equal to 

the price of input and the social marginal costs of the input, if any. The social marginal 

* The effluent standard can be related to water quality or soil erosion. Water quality 
standards could be specified as the maximum contaminant levels (MCLs) of agricultural 
chemicals in the drinking water and the soil quality standards are the usual "T" 
restrictions (soil loss tolerance levels). 



www.manaraa.com

cost of the polluting input z is marginal emissions, multiplied by the shadow value of 

emissions. Therefore, the marginal unit cost of the input, z, is increased by the 

marginal cost of emissions. If the constraint is binding, it forces a reduction in the use 

of z and/or a simultaneous increase in the use of x. 

The private optimization problem and the first-order conditions for an interior 

solution are given by: 

Max^^n = p^(x,z) - PjZ - PxX, (4) 

pfz = Pz (4.1) 

P^x = Px, (4.2) 

which is the standard competitive equilibrium solution of setting the marginal value 

product for each input equal to the price of input. If the emissions constraint is 

nonbinding, then = 0, in which case the social and private solutions are the same. 

The environmental damages are strict externalities; therefore, in the absence of 

incentives or any alternative mechanism the social costs of damage will not be 

internalized from an individual producer's perspective.^ An implication of this is that 

the producer will equate the ratio of marginal physical products to the price ratio of the 

inputs (ratio of private costs alone), as opposed to equating it to the ratio of private 

and social marginal costs. Given the assumptions on emission causing input z (d, > 

0), it can be seen that the ratio of marginal physical products at the social optimum will 

be greater than required to achieve the private profit maximizing solution. 

° Internalization is an approach commonly used to determine social optimality in the 
presence of externalities by considering jointly all of the involved agents. 
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There are several options by which the social optimum can be obtained in the 

presence of environmental externalities. These policy options generally include 

Pigouvian taxes or subsidies, direct regulations by way of design standards (limiting 

polluting input use) or performance standards (effluent standards / permits), 

assignment of property rights, moral suasion and education, and research and 

development. References abound in the NFS pollution literature to show that one or 

more of these options are in place to motivate the decision maker to internalize the 

externalities caused by agricultural production (Miranda 1992, Offutt 1991). 

There are several factors which motivate agricultural producers to internalize the 

on- and off-farm damages resulting from soil erosion. A recent study by Miranda 

(1992) finds that the farmers in the two major farm producing regions. Corn Belt and 

Lake States, incorporate the intertemporal consequences of land management 

decisions, particularly the on-farm productivity losses from top soil erosion. The off-

farm damages, measured as the cost of desilting drainage systems, rivers, and other 

water bodies, which is likely to increase the property tax, is a market force motivating 

internalization of soil erosion (Ribaudo 1986). In addition to the economic motivation, 

public-policy induced motivation can also be cited. The conservation reserve and 

conservation compliance programs, which tie program benefits to good stewardship, 

would be an adequate incentive to minimize soil erosion (Johnson et al 1991). Another 

example is the institution of Conservation District, which empowers producers and 

allow them to tap the technical/extension/education resources of the government, thus 

constituting to internalizing agricultural externalities. 
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Unlike soil erosion, the motivation to internalize externalities from chemical 

emissions is not obvious. However, the current NFS pollution policy debate motivated 

by the societal concern over groundwater and surface water pollution is likely to 

mandate specific institutional water quality regulations. For instance, the Clean Water 

Act of 1987 and the Rural Clean Water Frogram (RCWF) are some of the policies that 

motivate producers to internalize the externalities. Such potential (foreseeable) policies 

encourage producer to embrace NFS pollution control strategies (Offutt 1991). 

Furthermore, the ethical and equity concerns influence producers to internalize the 

externalities. Lastly, by assuming a single decision maker at the watershed level, 

preferably a watershed manager, adequate motivation through the assignment of 

property rights over an area potentially large enough to internalize the externalities is 

provided. The Fresident's Water Quality initiative instituted in 1989 providing farmers 

with the knowledge and technical means to respond voluntarily to grbundwater quality 

concerns related to agricultural activities is another example. 

Piecemeal Versus Comprehensive Approach 

A primary goal of the 1989 Fresident's Water Quality Initiative" is to encourage 

adoption of best management practices (BMFs) that are both economically and 

environmentally sound and prescribe public policies that are consistent with this goal. 

Despite concerted efforts to mitigate NFS pollution, the problem is still significant. One 

reason for not being able to alleviate the NFS pollution is the piecemeal approach 

° The Fresident's water quality initiative, launched in 1989 that will extend through 
1995, is a vigorous national effort to protect water resources from contamination by 
fertilizers and pesticides without jeopardizing the economic vitality of U.S. agriculture. 



www.manaraa.com

32 

embodied in resource and environmental protection policies. That is, the agency-

specific public policies focus on a single criteria, while we know that ecosystems are 

highly interrelated systems where the niches and attributes are related to each other. 

The following proposition precisely characterizes the need for multiple objective 

treatment for agricultural NFS problem. 

Proposition 2. A fundamental assumption in piecemeal NPS regulation is that the 
externalities addressed by them are independent, which is unrealistic given the highly 
interdependent biogeophysical processes determining soil and water quality. As these 
are interrelated processes, the regulations must focus on the vector of attributes to 
minimize unfavorable tradeoffs and maximize welfare gains. 

Such interactions are very well understood in the case of water quality, which is 

a multidimensional concept described by a vector of attributes. The NPS pollution 

processes determining the elements of this vector and their magnitudes are highly 

interrelated. Because of these interactions, unfavorable tradeoffs occur if the focus is 

on a single attribute at a time. For instance, water quality policies that generally 

emphasize regulating a single attribute for a targeted resource, independent of other 

attributes that are elements of the resource quality vector, may lead to elevated levels 

of unregulated attributes. Additionally such piecemeal environmental policies will 

impair the quality of the resources that are not subject of the current policy. 

Several illustrations of a sequential approach can be drawn from current NFS 

pollution policy niche. For instance, detection of herbicides in ground and surface 

waters has led to increased pressure on the US EPA to prescribe quantity based 

agricultural chemical policies such as achieving design / performance standards for 

water quality based on chemical constituents, unilaterally. If, however, this induces 

farmers to shift away from chemical intensive weed control systems to mechanical 
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tillage it can cause increased erosion and runoff. Contrarily, if the traditional soil 

conservation policies are promoted vigorously, then conservation tillage (reduced and 

no-tillage) systems that are more intensive in chemical use may be adopted widely 

eventually leading to increased detection of chemicals in water. In sôme instances, a 

management practice designed to protect one resource may inadvertently impair 

another. For example, the sustainable agricultural policy of including a legume crop 

such as alfalfa into a rotational sequence with corn to control soil erosion can 

significantly reduce erosion but only at the expense of elevated levels of nitrate-

nitrogen in the saturated zone (Foltz et al. 1990). 

In what follows, a simple mathematical treatment of the contradictions among 

NFS policies prescribed by different agencies is presented. Assume that the Soil 

Conservation Service (SCS) and the Environmental Protection Agency (EPA) are the 

two federal agencies, each with its own independent mission. Namely, the SCS's 

mission is to control soil erosion and preserve soil (land) quality and the EPA is 

responsible for protecting water resources from chemical contamination. In addition, 

the producer has the goal of maximizing net returns. In pursuit of economic efficiency 

the individual producer may not achieve environmental objectives. Mishan (1976) and 

Lave (1984) have discussed how an agency should behave in order to optimize social 

welfare in pursuing a particular objective. 

Assume the existence of a well-defined social utility function that measures the 

net societal welfare. Let the social utility U be a function of land quality (L), water 

quality (W), and economic returns (R), 
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U = u(L, W, R). (5) 

Assume all attributes are desirable. That Is, U is an increasing function of L, W, and R. 

Assume that each of the attributes is determined by one or more of the following 

factors: tillage (t), chemicals (c), and output (Q). That is. 

where the output Q is as determined by the function f ( x ,  z). The vector x is the 

nonpolluting inputs and the vector z is the polluting inputs including t and c. To 

simplify the discussion, water quality is assumed to be directly related to the level of 

inputs. Soil erosion, which is captured by the intensity of tillage, could be measured by 

the amount of residue cover plowed into the field by the intensity of the tillage 

operation. Subscripts denote partial derivatives and all the functions are assumed 

twice differentiable. More tillage (meaning less residue cover) impairs land quality by 

eroding the topsoil at increased rate, while more tillage implies less chemical 

dependence, and therefore, less chemical residue in water. Increased use of chemicals 

offsets tillage, thereby protecting the soil from erosion but potentially increases the 

chemical residue. In general, a conservation tillage system, such as no-till, is a 

chemical-intensive system relative to conventional tillage (USDA 1993). 

Substituting the expressions (6) through (8) into (5), we rewrite the social utility 

function as. 

L = /{t,c,Q), /,,/Q <0 and /„ >0, (6) 

W = w(t,c), w, >0 and w, <0, (7) 

R — r(Q), rQ > 0, (8) 
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U = ut/(t,c,Q); w(t,c); r(Q)]. (9) 

The underlying preferences are assumed to satisfy the axiomatic conditions and the 

function u is assumed smooth and quasi-concave. The following proposition, proved in 

(Varian 1984 p.113), will assert the existence of u: 

Proposition 3. Suppose preferences are complete, reflexive, transitive, continuous, and 
nonsatiating, then there exists a continuous utility function u:I^ •* R which represent 
those preferences. 

The agencies, who are concerned with their own mission, will act in a myopic 

fashion. According to this simplified model, the SCS will encourage adoption of BMPs 

that limit soil erosion, independent of the Impact on other attributes. That is, they will 

choose the optimal level of tillage that maximizes land quality. 

Proposition 4. The optimal level of tillage is the point where the incremental land 
quality from the last unit of tillage is zero. In other words, the optimal level of tillage is 
the point where marginal land quality is zero. 

The SCS problem can be expressed as choose tillage to maximize land quality [Max L], 

which gives the following first-order condition proving proposition (4): 

MaxL: (9//at) =0. (10) 

Likewise, the EPA will choose an optimal level of chemical to maximize water quality. 

Proposition 5. The optimal chemical use is the point where marginal water quality is 
zero. 

The EPAs problem can be stated as Max W with the following first-order condition, 

which proves proposition (5), 

Max W: (Sw/gg) = o. (11)  
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Clearly, these solutions are myopic in nature; they ignore the inter-relationship 

between the underlying physical processes and also the simultaneity. From a social 

perspective of minimizing contradictions and maximizing social welfare, each agent 

would take the first derivative of equation (9) with respect to all relevant and 

interdependent variables and set the resulting expression to zero. 

Proposition 6. The SCS, who is an agent of society, should choose tiiiage such that the 
sum of the marginal utility from increased land and water quality is zero. 

The SCS problem is restated as Max^U, and the first-order condition of this problem 

proves proposition (6), 

MaxU: I (9u/a/) (9//at) + (9u/8w) (^w/gt) 1 = 0. (12) 

The condition in (12) considers the impact of tillage on all environmental attributes and 

not just its impact on land quality as in the myopic condition (10). The net social 

welfare gains in (12) are adjusted for the tradeoffs from such interactions. 

Proposition 7. The EPA should choose chemical use such that the sum of the marginal 
utility from increased water and land quality is zero. 

That is, the EPA will solve the following first-order condition to determine optimum c: 

IVIax U: I (Su/a^) (Bw/gc) + (au/g/) (aZ/gg) ] = 0. (13) 

The conditions in (11) and (13) represent a comparison between examining the impact 

of chemical use only on water quality and examining the impact of chemical use on 

both water and land quality. 

Proposition 8. The private producer will choose an optimal output level so that the sum 
of the marginal utility from increased revenue and increased land quality is zero. 
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That is, the producer will choose optimum output according to: 

Max^U: [ (^u/gr) (Ôr/gQ) + (gu/g) (/8//aQ) ] = 0. (14) 

This proposition can be motivated by the on-farm productivity gains to preserving 

topsoil (Langdale and Shrader 1982) and also by the cross-compliance provisions of the 

commodity program. The provision requires conservation plans on highly erodible lands 

as a prerequisite for access to program benefits. 

The solutions to (12), (13), and (14) are nonmyopic but lack simultaneity. To 

minimize the conflicts and achieve the full benefits of a comprehensive approach, 

however, the conditions in (12), (13), and (14) should be solved as a system, which is 

tantamount to optimizing equation (9) with respect to t, c, and Q, simultaneously, as 

shown here: 

Max U = u[/(t,c,Q); w(t,c); r(Q)I. (15) 
t,o,Q 

Assuming an interior solution, the first-order conditions for maximization are, 

The system of equations (15.1) through (15.3) in them solves simultaneously 

for the optimal levels of decision variables, t', c*, and Q*. Second-order conditions are 

assumed to hold. 

au/gt = [ (au/a/) (az/^t) + (au/g^) (aw/^^) i = o, 

au/ac = ( (au/8w) (^w/ac) + (az/gc) i = o, 

auzao = [ (auzar) (Srzaa) + (^u/a/) (az/ao) i = o. (15.3) 

(15.1) 

(15.2) 
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Evaluating the objective function at the optimum levels of decision variables, and 

substituting them in (15) get U*. Contrasting this solution with the myopic and 

piecemeal solution, U" the following holds: 

U* & U", (15.4) 

which proves proposition (2) stated at the outset. 

Proposition 9. If the underlying physical processes are independent then U' and W are 
equal. 

If the social utility function is additively separable, then the second cross-partial term in 

equations (15.1) through (15.3) are zero. Therefore, the solution to problem (15), 

represented by U', is the same as the myopic and piecemeal solution U", which proves 

proposition (9). 

Using the multiattribute utility function (5) we can graphically show the 

condition for optimality and the tradeoff between soil and water quality, holding net 

returns at a predetermined level R. Figure 1 illustrates the model for analyzing the 

tradeoff between soil and water quality. Soil and water quality are plotted, 

respectively, on the vertical and horizontal axis. Point B is the initial distribution of soil 

and water quality. Curve XY is the tradeoff frontier or the transformation function 

which is an envelop of all feasible BMPs for a given level of net returns. Along this 

frontier, marginal rate of transformation (MRT) measures the sacrifice of soil quality for 

a unit increase in water quality, that is, 

MRTl ,w  = -(dL/dW) = ( 9 h / 0 w ) / ( 9 h / 0 L )  (16.1) 
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Figure 1. An illustration of soil and water quality tradeoff 
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where h(W,L;R) is a convex function, the transformation locus. The utility function of 

the agent, expressed as iso-value utility (indifference) curves, is overlaid on the 

transformation curve. The indifference curve measures the marginal rate of 

substitution (MRS) between soil and water quality and is defined as 

MRSl,w = -(dL/dW) = ( 9 U/a vv ) / ( 3 U/a L ). (16.2) 

The initial allocation B is feasible but the agent can move towards the boundary 

of the feasible set, which is the transformation locus, and achieve higher utility. The 

agent maximizes his utility at point D, where MRT = MRS, that is the point of 

tangency between transformation frontier (XY) and the iso-value utility curve (UM. This 

follows from the separating hyperplane theorem. The negative slope of the hyperplane 

(TT') that separates the two sets, which is tangent to transformation locus and 

indifference curve, indicates the relative marginal values of soil and water quality for a 

given return R. Denoting the marginal tradeoff of soil quality for the water quality as a 

weight A, then the slope of the indifference curve at point D is the negative of the 

ratio of the weights attached to soil and water quality in the utility function. 

Therefore, by changing the weights the transformation frontier can be traced. 

The Conceptual Framework 

There is growing awareness of the far-reaching environmental impacts of 

economic activities. Environmental policy analysis concerns conflicting goals and 

competing social interests and power structures; therefore, a multiattribute treatment is 

necessary (Nijkamp 1980, Brouwer 1987). NFS pollution problems are typically 
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multidimensional because the pertaining phenomena emerge from different disciplines, 

such as economics, ecology, physical and natural sciences, and sociopolitical sciences. 

Therefore, an integrated modeling framework that embraces all the disciplines and is 

represented as a multicriteria decision problem is appropriate. Furthermore, such a 

holistic approach is a key to understanding the interactions between the agricultural 

and environmental factors in determining the nature and intensity of pollution and the 

policy implications. 

The integrated system conceptualized for the NFS pollution problem consists of 

an economic module, an ecological module, and a policy module. The conceptual 

framework is represented in Figure 2. This framework demonstrates the economic 

relevance of the agricultural production decisions, as well as the ecological 

consequences of those decisions that involve intensive use of chemicals and tillage. It 

also depicts simultaneous interactions with the policy module and the implications of 

alternative policy regulations on the economic and ecological systems. 

The economic module simulates the agricultural economic decision making 

process and the behavior of producers, and evaluates the economic and ecological 

impacts of management and policy alternatives. To simulate the resource adjustment 

decisions, the economic module must have a detailed analytical decision system 

defined at the watershed level. 

The environmental module is structured mainly to describe the impact of runoff 

and emissions into various media. It is integrated with the economic system through 

the coefficient matrix of emissions loading and standards. It is linked to the policy 

module, which is fed with information on environmental (multimedia) quality and 
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Figure 2. A multicriteria decision framework for integrating agricultural and environmental policies 
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potential producer and public concerns. The environmental system will be made 

operational by a set of reduced form equations (response functions) predicting the 

environmental fate and transport of soil, chemicals, and nutrients. The process that 

identifies and estimates these response functions is called metamodeling. The use of 

metamodeling to provide an interface between the ecological and economic systems is 

a novel concept (Bouzaher et al. 1993). Metamodels are statistically validated 

response functions fitted to a vector of environmental attributes, which are outputs 

from a comprehensive mathematical simulation model that simulates the underlying 

physical processes. The policy module reflects the public and producer concerns in the 

form of regulations that balance the interests of conflicting groups. 

Empirical implementation of this integrated modeling system in a multiobjective 

context is challenging because It requires an enormous amount of data, a wide range of 

models and research tools, and coordination of agencies and disciplines. Coordination 

is defined primarily as a team approach with cost-sharing across agencies so that their 

decisions are in harmony with the goals of the society. The idea is that the 

coordination effort must transcend the boundaries of all participants so that the 

complimentarities, if any, are utilized and the contradictions are minimized. The choice 

of tools and methods in each discipline must be consistent with the goal of integrating 

various modules. 

In the following sections, the integrated framework is formalized as a 

multicriteria decision making problem. Multiattribute utility theory (MAUT) and social 

welfare theory are invoked to motivate the MCDM problem. Finally, a solution method 

is presented and related to the multiattribute utility and social welfare concepts. 
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The MCDM Problem 

Let € be the vector of spatial and environmental characteristics of the basic unit 

of production in the given watershed that impacts the production of both output and 

nonpoint pollution. The nonpoint pollution generating functions for each resource 

media by pollutant type is represented by the following set of metamodels; 

D = d(z ,e „€ ) ,  (17) 

where D is the vector of media-specific emission, z is the vector of environmentally 

benign input levels, and ^ is the vector of characteristics (properties) of z including the 

management conditions that influence emission. This is a detailed specification for the 

emission function, d(z), in equation (2). All it says is that the environmental emissions 

are functions of input quantities and their characteristics, and also the spatial and 

environmental attributes such as meteorological conditions, local hydrological features, 

and soil properties. Because of spatial and production heterogeneity, this level of detail 

in measuring NFS emissions is essential for informed decisions on NFS policies. The 

coefficients of the emission function will be empirically estimated by combining the 

physically calibrated simulations with statistically validated metamodeling procedures. 

The economic model, which is the basic agricultural decision making model for 

optimal allocation of resources in crop production, is a function of policy parameters T, 

prices p, and the environmental characteristics e, besides x and z. Assuming an 

exogenously given price and policy vector the watershed manager's problem is 

IVlax = f { x ,  z ,  p, r, e)  and (18) 
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IVlin D = (/(z, e), (19) 

subject to resource, technological, physical, and institutional constraints. D is a vector 

of conflicting and non-commensurable attributes. An objective is in conflict with other 

objectives if an increased achievement of that objective reduces the levels of 

achievement of one or more of the other objectives. They are non-commensurable in 

the sense that the economic efficiency is measured in monetary units while the 

environmental quality is measured in units of pollutant concentrations / loading (for 

example, tons of soil eroded, chemical concentrations in //g/L Ippb], nutrient 

concentrations in mg/L [ppm]). 

Note, n and D are functions of input use and environmental characteristics. 

Therefore, the production decisions generate a joint distribution of output, input use, 

and pollution implying that targeting a single factor will affect the joint distribution that 

may exhibit undesirable tradeoffs. Hence, solving this problem in a multiple objective 

framework will be "efficient" in an overall welfare sense. In this framework, objective 

importance can be varied by assigning different weights, either arbitrarily or from a 

priori information, and the efficient frontier can be traced by parameterizing the 

weights. 

To simultaneously evaluate these conflicting objectives vector maximizing tools 

are required. Vector maximization (multiobjective programming) has been one of the 

widely researched topics in management science, operations research, and economics 

(Cohon 1978, Rietveld 1980, Zeleny 1982). MCDM represents a very useful 

generalization of more traditional single-objective approaches to planning problems. 
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Informed decision making requires a knowledge of the wide range of alternatives, 

which can be provided by multiobjective analysis. In the public policy area MCDM is 

the rule rather than the exception, due primarily to the multiplicity of interests that are 

embodied by social welfare. 

Mathematically the MCDM problem is stated as, 

maximize /(x) = [f,(x), fglx),..., fq(x)] (20) 

s.t. X e X = { x I g,(x)iO, j = 1,2,...,m; xaO ), (20.1) 

where x is an n-dimensional vector of decision variables. The functions f,, fg" " 

are the q-real valued attribute functions defining the attribute of relevance and X is a 

nonempty, closed, and compact set defined by a set of m constraints dictated by the 

physical processes and resource endowments. The feasible set X is convex and is 

smooth and concave supposed. The solution method essentially involves aggregation 

of these attributes fy by some rule. The most formal and theoretically sound method is 

the multiattribute utility method, where the solution is found by directly aggregating 

the underlying preferences. However, its applicability to public policy problems in 

agriculture is fraught with empirical difficulties. An alternative is the subjective 

weighting method. Weights on objectives are the simplest form of stating the 

preferences. However, the DM's value judgement introduced through the articulation 

of these subjective preferences is a drawback. But given the limitations of other 

methods, the weighting method is more intuitive for this problem. 

Unlike in the scalar optimization problems, there is no single "optimum" solution 

to vector maximization problems because a solution which maximizes one objective will 
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not, in general, maximize any of the other objectives/ The vector maximization 

problem identifies a set of efficient solutions x* in the decision space, or equivalently, 

noninferior (nondominated) solution f i x ' )  in the criterion space. 

Definition. A point x*€X is said to be an efficient solution if and only if there does not 
exist xEX such that f{x) & fix*) and for at least one value of i, f,(x) > f,(x'). 

That is, any solution for which none of the criterion functions can be improved without 

causing a degradation in any other is a noninferior solution. 

The noninferior solution, f i x ' ) ,  is an image of x' in the decision space. In the 

welfare economics literature it is referred to as the Pareto efficient solution." The 

Pareto ranlting, which states that allocation A is socially preferred to allocation B if at 

least one person's utility is higher in A and no other person's utility is lower, is not 

complete. The noninferior solutions, which lie on the northeast boundary^ of the 

feasible region in objective space, also are characterized by partial ordering. Therefore, 

the objectives must be traded off against each other if we prefer one solution over the 

other. Tradeoff between two objectives is defined as how much one objective must be 

sacrificed to gain an increase in the other. The preferred solution in the noninferior set 

is the "best-compromise" solution. 

^ This follows directly from whether all feasible solutions can be completely ranked, 
or, only a partial ranking is possible (as is the case in the multiple objective problems). 

° Pareto efficiency is defined as: "there is no feasible allocation where everyone is 
at least as well off and at least one agent is strictly better off." 

° It can be graphically demonstrated, in the two objective case, that all interior 
solutions must be inferior for one can find a feasible solution that improves both the 
objectives and any feasible solution on the boundary that is not on the northeast side 
of the feasible set is inferior (Cohon 1978). 
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Kuhn-Tucker (1951) conditions for noninferiority are (see Zadeh 1963 for proof): 

Theorem. Given that the feasible set X is nonempty and convex and the attribute 
functions, are each smooth and quasi-concave, then x* solves (20) if and only if 
there exists Lagrangean multipliers //j & 0 for j = 1,2,...,m, and X, & 0 vi such that 

The noninferior condition, stated in (21.1), requires feasibility and the condition (21.2) 

is a statement of complementary slackness.^" Condition (21.3) relates the gradient of 

the objective function at x' to the negative of the gradient of the binding constraints, 

evaluated at x*, where the gradient is the n-dimensional vector of partial derivatives. 

Note, (21.3) can be interpreted geometrically as follows: The nonnegative linear 

combination of the objective function gradients has to lie within the cone of the 

constraint gradients, evaluated at x*. This follows from the separating hyperplane 

theorem (Varian 1984). 

Theorem. If A and B are two convex sets that are disjoint, there exists a linear 
functional p 0 such that p x & p y vxinA and y in B. 

Proposition 10. Given feasible set X is convex, noninferior solutions are those points x* 
on the boundary of X through which hyperplanes that separate X and the set of all 
vectors in JT that are superior to x can be passed (Zadeh 1963). 

X € X, 

//|gi(x') = 0, j = 1,2,...,m, and (21.2) 

(21.1) 

2^^ A v/,(x') - X)'" //j vg,(x*) = 0. 
1 = 1  -  J = 1  

(21.3) 

The complementary slackness is interpreted as, if //j = 0 the expansion of 
currently unused resource will not increase the objective function value; or, if ;c/, > 0 
then all of the presently available resource must be used. 
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This condition implies that movement from x* along any direction that increases 

the value of the objective function must be infeasible and, further, that any move in a 

feasible direction cannot result in an increase in the objective function value. In other 

words, the direction of improvement and the direction of feasibility are exactly 

opposite. The conditions in (21.1) through (21.3) are necessary for noninferiority. 

They are also sufficient since f/x) are concave v i = 1,2, ..., q, and X is convex set. 

Social welfare, multiattrlbute utility, and IMCDiM 

The alternative solutions in the noninferior set are not comparable just on the 

basis of the objective function values alone. Complete, unambiguous ranking of 

alternative solutions based on objective function values alone is possible only when one 

alternative dominates the other. As the name indicates, the alternative solutions in the 

noninferior set are nondominated; therefore, a function (transformation) that will allow 

complete ordering of the alternative solutions and define a ("nonsubjective") "scalar 

indicator" of overall welfare is required. By complete ordering it is meant that the 

preferences must be completely ordered by the binary relation "Is at least as good as 

[k]" and must satisfy the conditions of completeness, reflexivity, and transitivity. 

Thus, if there are many states of x, given by a,b,c,..., between every pair of states, 

say a and b, just one of the three cases hold for completeness: 

a k b and b k a, (22.1) 

a k b and not b k a, and (22.2) 

b >- a and not a k b. (22.2) 
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It means that the individual is able to compare each arbitrary pair of elements of x. 

Thus, a ~ a implying reflexivity and, for any 3 states, a k b and b k c implies a k c 

(transitivity). 

Given these and other topological properties, there will always exist an infinity 

of such functions, each such function being a monotone stretching of any other 

(Samuelson 1965). Utilizing one of an infinity of possible welfare indices, we may 

write this aggregate function as 

W = W(Ui(x), U2(x),..., u„(x)]. (23) 

This is the Bergson-Samuelson social welfare function (SWF), which is the focus of the 

modern welfare theory (Bergson 1938, Samuelson 1965, 1977). Social welfare 

function (W) is a mapping of utilities of individuals of a society into the real line, so 

that it will be able to select the most desirable distribution from the set of all feasible 

distributions of private utilities. 

Assuming W is increasing in each of its arguments, the problem of choosing the 

most desirable utility distribution can be formalized as: 

maximize W = W[u,(x), U2(x),..., Un(x)], s.t. x € X (24) 

As in consumer theory, an ordinal welfare function W is sufficient to derive the 

optimum. Suppose x' is an optimum allocation, then the following propositions (proved 

in Varian 1984) hold. 

Proposition If x' maximizes a social welfare function then x' is Pareto efficient 
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Proposition 12. Given x' is Pareto efficient with x, • 0 v / and u,'s are concave, 
continuous, and monolonic, then there is some choice of weights c,* such that x* 
maximizes u,(x) subject to the resource constraints. 

The existence of a well-defined social welfare function has been questioned. 

According to Arrow (1951), any social preference structure must satisfy the following 

five axioms: (1) complete order, (2) responsiveness to individual preferences, (3) 

nonimposition, (4) nondictatorship, and (5) independence of irrelevant alternatives. 

Arrow's impossibility theorem states that, in general, it is not possible to construct a 

social preference structure that satisfies all the five axioms, simultaneously. There is 

an ongoing debate in welfare literature on this issue. However, for this study the 

existence of SWF is supposed/" 

Now, assume that there is a centralized planner (watershed manager) who is the 

sole decision maker. The DM is confronted with multiple objectives, namely, the 

maximization of revenue and the minimization of environmental damages, or 

equivalently, maximization of environmental quality. Assume that the DM's 

preferences for the i"" objective are known and satisfy all the regular axioms (Fishburn 

1970, Keeney and Raiffa 1976). Assume the existence of global preferences so the 

DM can aggregate the utility derived from various attributes. This presumes that the 

DM derives utility by simultaneously maximizing the revenue and environmental quality. 

Then, the DM's problem is a multiattribute utility maximization problem. Given that 

U(.) represents aggregate preferences, the multiattribute utility maximization problem is 

stated as, 

Samuelson in his writings about Bergson welfare economics shows 
constructively that a well-behaved Bergson-Samuelson SWF does exist. 
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maximize U = U[f,(x),^2(x), /^(x)], s.t x G X (25) 

where U[ ] is q-dimensional vector of attributes, which implies that economic and 

environmental objectives are to be maximized simultaneously. We will assume is 

smooth and concave and U is smooth, concave, and monotonie. Between the f's 

there will be a number of "technologicar relations limiting our freedom to vary them 

independently. The content of these technological relations will be determined by the 

level of abstraction desired by the planner. Assuming regularity conditions, it would be 

possible to derive formal conditions for the maximum. 

Consider the multiattribute utility maximizing problem represented by additively 

separable preferences: 

maximize U = Zc, f,(x), s.t x G X. (26) 

Solution vector x' solves the problem if there exist a vector of nonnegative numbers 

m , such that: 

C| vf,(x ) = m . (27) 

Note the similarity of the expression in (26) and the Benthomite type SWF, which is a 

weighted sum of utilities with c, = c,, except that here different relative weights are 

possible. The use of positive weights is equivalent to the construction of a linear 

indifference curve with the slope equal to the negative of the ratio of weights. That is, 

a constant marginal rate of substitution (MRS) between, say, and equal to the 

ratio of weights [Ck/C,], where is an arbitrarily chosen numeraire, is implied. It is 
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Standard to choose economic efficiency as the reference objective; therefore, the 

tradeoffs are measured in terms of dollars per unit of environmental quality. The 

implication of constant MRS is that the willingness to trade one objective for another is 

independent of the level of objectives. 

Returning to the generalized utility function postulation (25) of the multicriteria 

decision making problem, assume complete ordering of all combinations of objectives; 

therefore, the indifference curves span the entire objective space. The set of all 

feasible allocations that are indifferent to each other is called an indifference curve. 

The collection of indifference curves is called an "indifference map." These 

indifference curves are similar to the iso-welfare curves (the locus of the same welfare 

for a different set of allocations). Just as one moves towards an allocation such that 

the iso-welfare curve is tangent to the grand utility possibility frontier to find the unique 

Pareto-efficient welfare maximizing allocation, here the best-compromise solution is 

that noninferior point at which an indifference curve is tangent to the nondominated 

set. This is essentially the first-order condition of the maximization problem in (25). 

Consider Figure 3, in which is illustrated an indifference map, feasible set X, and 

nondominated set N*' for a two dimensional case in the criterion space. The 

indifference curve U° goes through many feasible solutions, but none of them qualify to 

be a best-compromise solution because we can move to higher Indifference curves and 

still be able to find feasible solution. How farther can we go is determined by the point 

of tangency of the indifference curve with the nondominated set. The tangency 

condition can be restated as, the equality of desirable tradeoff (the negative slope of 

the indifference curve) and the feasible tradeoff (the slope of N**). 
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Figure 3. An illustration of the necessary condition for efficiency in à bi-criterion case 
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The difficulty in identifying a functional form for U for real world public policy 

problems calls for additional structure and more restrictive assumptions on utility 

"decompositions" to get simplified representations. If an extreme decomposition, 

namely the additive preferential independence/* is supposed then a simple additively 

separable utility representation as in (26) is obtained. Alternatively, if a less restrictive 

decomposition, namely utility independence/* is supposed, then it reduces to a more 

complicated multiplicative form. If the assumptions on u, and x hold, then the 

preferences summarized by the additive (multiplicative) function are strictly concave 

(strictly quasi-concave), implying any local optima is a global optima (Harrison and 

Rosenthal 1988). 

Multiattribute utility function representation is useful for conceptual reasons 

because it enables us to define optimality in a multiple objective framework. In spite of 

the conceptual elegance, its use as a practical tool for public policy problems is limited. 

Major limitations are; (1) the representation of global preference relation and 

identification of the correct functional form to capture this relation, and (2) the ability 

to test the underlying assumptions and properties. Even if we can identify the utility 

function, most of the time it is nonlinear and thus hard to solve empirically. Therefore, 

Given (X* X®) decomposition of X, then X* and X® are additively independent of 
each other if preferences between probability measures (gambles) on both X^ and X°, 
depend only on the marginal gambles of X* and X°. 

Given (X* X®) decomposition of X, then X* and X® are utility independent if 
preferences for gambles over (X, x**), conditioned on fixed level of x*" € X® depend only 
on the marginal gambles over X and is independent of those fixed level of x**. 
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for solving this problem researchers generally prefer programming methods, which are 

of course implicitly related to some simple preference structure. 

Solution method 

The need for a careful choice of a solution method cannot be overlooked. The 

method chosen should be valid and simple to implement and it should be adequately 

related to the theoretically appealing multiattribute utility. Keeping these points in 

perspective, a solution method that combines the best elements of the direct method 

(preference based method) and the distance based programming method is suggested. 

More specifically, the distance method minimizes some measure of weighted distance 

from a reference point. By carefully selecting weights, distance metric, and reference 

point we can adequately relate the resulting method to the preference based method. 

Depending on the choice of distance metric and the definition of reference point, 

the methods differ. The Z.p-metric (Minkovsky metric) is the most common measure 

employed. It is represented in its general form as, 

= f X ?  l a r b J - K  i s p ^ o o  ( 2 8 )  
' • 1  =  1  • '  

where (a,, ag, ..., a,) and (b,, bj, ..., b,) are the coordinates of the two points, the 

distance between them is being minimized. In a multiobjective problem context, the 

distance between the objective and its reference point is minimized. If the reference 

points are goal levels for each of the attribute then it is solved as a goal programming 

problem (Charnes and Cooper 1961). Alternatively, if some notion of "ideal" as 

suggested by Zeleny (1973, 1974) and Yu (1985) is used as the reference point, then 
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the method is called compromise programming (CP). Both goal and compromise 

programming has applications in agricultural planning (Romero and Rehman 1989, 

Romero 1991), agricultural and industrial nonpoint pollution (Lakshminarayan et al. 

1991, Briassoulis 1987). Because of the simplicity of these two methods and the 

availability of solution algorithms, these are favored by many researchers. 

The general specification for the programming problem of minimizing the 

weighted distance is: 

minimize Z.(>t,p;q) = /I," - f/x)]", 1 ̂  p ^ <». (29) 
1 = 1 

Note that the solutions to this optimization problem are not changed by dropping the 

exponent (1/p). Furthermore, the deviations are weighted by the scaling parameter À 

to account for the relative importance of the objective deviations. Only the relative 

weights on the objectives matters. As long as the weights are nonnegative, the 

solution to the weighted objective problem is in the noninferior set. Therefore, by 

parametrically varying A we can trace out the noninferior set. The parameterization of 

weights to find the noninferior set eliminates the subjective judgment involved in the 

general weighting method. Finding the solution x* that is optimal with respect to a set 

of weights reflecting a compromise in some way is an interesting approach to 

identifying the noninferior set. 

The idea of using weights to identify the efficient points stems from the second 

fundamental welfare theorem. That is, the method follows directly from the Kuhn-

Tucker conditions for noninferiority stated in (21). The Khun-Tucker conditions for 

noninferiority stated in (21.1) through (21.3) require that a solution x* is noninferior if 
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there exist a 0 and //| a 0. If x* satisfies these conditions, then it is also an optimal 

solution to weighted objective problem since, 

Vf( X, A) = 7f,{x). (30) 

Only other qualification that is needed is that the weights be strictly positive for the 

sufficiency condition to hold. 

The parameter p also plays the role of additional scaling factor. Its property, 

proved in Yu (1985), Is summarized in this proposition. 

Proposition 13. If the feasible set is compact and convex then the solution to (29), for 
1< p < 00, AS continuous in p. If additionally, L, and L„ solutions are unique, which is 
true if Xis strictly convex, then the solution is continuous inp for 1 p and the 
solution is bounded from the top when p-1, and from the bottom whenp = oo. 

Thus the parameter p plays the role of the balancing factor between the weighted 

sum of the objectives, and L^, the largest Individual regret. But a major weakness of 

the [p-metric is that it is possible that the solutions for 1 £ p £ oo may all be the same, 

thereby limiting the number of alternative solutions available for the DM to make a 

choice. Because of this weakness, only solution corresponding to the /L,-metric will be 

generated for different choice of weights A. The case p = 1, where the sum of 

deviations are minimized, is the preferred metric in most of the empirical analysis since 

it reduces to a standard weighted goal programming technique. See Appendix 1 for a 

mathematical representation of the solution algorithm, which is a piecewise linear 

approximation of the goal programming formulation. The implications of this metric for 

the underlying preferences and their aggregation are explained later in this section. 

Rietveld (1980) evaluated 14 alternative noninferlor solutions and concludes that the 
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solution to Z.,-metric satisfied the following "necessary" conditions; impartiality, 

efficiency (noninferiority), and nonextremity. 

Another limitation of the compromise programming method is attributed to the 

specification of the reference point. The reference point f\ in the compromise 

programming method, called the ideal point, is the optimal solution corresponding to 

when the i"* objective is maximized individually, ignoring the other objectives; that is, 

f = max{^,(x)|xG X, i = 1,2,...,q}. (31) 

A drawback of using the ideal vector, as defined in (31), for NFS pollution problems is 

that it is too restrictive. First, the environment has a certain capacity to assimilate 

emissions. Second, the NFS emissions have aquatic and human health impacts only if 

they exceed a certain benchmark (MCLs). Therefore, referencing the ideal vector as 

the goal vector, where the goals are represented by the environmental benchmark 

values, is less restrictive. For nutrients and chemicals, the MCLs for human health and 

aquatic exposure can serve as a typical vector of goals, and for the soil erosion, the 

soil loss tolerance limits (T-values) can serve as a natural goal. Choosing the elements 

of the ideal vector by a priori information is parallel to prescribing realistic goals. 

Since the objectives are noncommensurable, it is standard to normalize them 

either as percentage deviations from the goal, or to use the absolute difference 

between the best and the worst solution for each objective as the normalizing factor 

(Duckstein and Opricovic 1980). For notational simplicity, the normalization of 

objectives is supposed. Assuming that all are maximization objectives, then for p = 1 
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min AM,1;q) = Bi 
(32) 

= min /*! /|(x) = max Af f,(x) (33) 

since are constants. Here a weighted linear sum of the normalized objectives is 

maximized. The expression in (33) is identical to the preference structure implied by 

(26) with the weighting parameter >1, being equal to the scaling constant c,* and is same 

as maximizing the linear sum of the weighted objectives (30). 

By scaling the objectives with nonnegative weights, such that /I, ^ we get 

the modern welfare economist's version of SWF (a weighted sum of utilities with 

different relative weights). Therefore, the "weights" approach—that is solving (33) 

through repeated and systematic variation of the weight vector—can be used to trace 

out the noninferior set N"'. Note, if the weights v i,j then the expression in (32) 

is analogous to the utilitarian type SWF suggested by Bentham (1948), which implicitly 

assigns a value judgment that utilities of individuals in society should be weighed 

equally. Similarly, note the parallel between (33) and the extreme egalitarian type SWF 

provided by Rawls (1971) principle of social justice, which states that society is no 

better off than its worst-off member. Utilizing the concept of production possibility 

frontier it was demonstrated that the utility maximization solution, where the 

multiattribute utility function is represented by an Ap-metric, will be in the noninferior 

set bounded by and L„ metrics (Ballestero and Romero 1991; pp. 421-427). 

Clearly, several efficient noninferior solutions will be generated by varying the 

weights. The number of solutions and the complexity of the problem is stupendous if 

the problem has more than three objectives. Therefore, the problem of identifying the 
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best-compromise solution is solved in two steps. In the first stage, alternative efficient 

solutions are generated, corresponding to the parametric variation of the weight vector 

for a given metric. In the second stage, these solutions are evaluated to identify the 

best solution as some compromise of the first-stage solutions. One of the following 

two methods can be used to find the best-compromise solution. 

The first method is a more systematic, but time consuming, interactive (learning 

by doing) technique, where the DM evaluates and ranks interim (provisional) solutions 

and express how far off or close those solutions are to the true preferences. In the 

next iterative phase the additional information that is given by the DM is incorporated 

into the mathematical programming method by way of new constraints to improve the 

provisional solutions. An optimal stopping rule ends the search. By this interactive 

technique we try to identify, at least approximately, the true preferences. 

The second method chooses the best-compromise solution from the several 

alternative efficient solutions generated in stage one, where the problem of choice is 

now specified as an expected utility maximization problem. This technique is 

computationally faster and simple to implement but it requires specific structure to be 

imposed on the expected utility function. Suppose X(i) are the noninferior solutions, 

max E u(X(i);r), where r is the scale parameter. By imposing a particular structure on 

u, such as the Cobb-Douglas structure, this problem can be solved for the best-

compromise solution. 
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CHAPTER IV. EMPIRICAL MODELS AND METHODS 

Integrated analysis of alternative NFS pollution policies, to achieve both 

economic feasibility and environmental sustainability, requires multidisciplinary models 

and methods. As described in the conceptual framework, three major modules-

environmental, economic, and policy— constitute the overall integrated framework. In 

this chapter, a brief description of each of the modules along with a description of 

various data needs and sources is presented. Economic data, including data on 

production and management, are available from published sources. However, the 

environmental data are not readily available. These data gaps are filled by outputs 

from biogeophysical simulation models, where the simulation experiment is performed 

according to a well designed plan similar to the agronomic field experiments. At 

present, mathematical simulation models are the only hope for a timely evaluation of 

alternative policies, ex ante. The plan starts at the homogenous spatial unit, soil. The 

outputs from the physical process models simulated at the spatially disaggregated level 

must be aggregated to the level of enumeration of the economic model, which is the 

regional (watershed) level. Therefore, a brief outline of method of aggregation and its 

implications and underlying assumptions also forms a section in this chapter. 

This chapter is organized into four major sections. First section describes the 

simulation plan including a description of the physical process model. The agricultural 

economic model is described in section two. Section three describes the aggregation 

process including the metamodeling procedure and economic, environmental, and 

policy model interface. Finally, the empirical multicriteria decision making model is 
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outlined with a brief explanation of the choice and relevance of various environmental 

criteria and their reference values (standards / benchmarks). 

Biogeophysical Simulation Plan 

Agricultural NFS pollution is a significant source of water quality problem. 

Alternative best management practices are being developed to combat the NFS 

pollution threat. Froper management of any system requires estimates of the impacts 

of alternatives being considered. This is particularly true with NFS pollution control as 

decision maker's are faced with conflicting objectives. The decision space of 

environmental component is multidimensional which compounds the analytical task. 

For instance, to adequately address the water quality problem several water quality 

constituents have to be measured simultaneously. Therefore, the data requirements 

for comprehensive resource quality assessments are extensive. An effective plan can 

be developed only from good data. 

Monitoring and simulation modeling are two approaches to assessing water 

quality information and evaluating the effectiveness of alternative BMFs. Water quality 

monitoring can be defined as any effort to obtain an understanding of the biophysical 

and chemical characteristics of water via statistical sampling (Dillaha and Gale 1992). 

Monitoring is the first best option to assess water quality, but the usefulness of 

monitoring data depends on the design and implementation of the monitoring effort. 

The scale of resource quality assessments where we are called upon to perform the 

analysis is usually regional scale. The heterogeneity of soil, topography, hydrology, 

and weather factors within a region calls for a large network of monitoring stations. 
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which malces monitoring impractical because of the time and resource limitations. 

These are also the factors that make it difficult to implement monitoring programs 

whose results can be generalized across the spectrum of spatial and temporal factors. 

An alternative approach for assessing resource quality impacts is to use 

biogeophysical simulation models.^* These are mathematical models that describe 

and simulate the physical, chemical, and biological processes impacting the real-life 

system being modeled. In recent years there has been a great interest among the 

research community in using these models to answer NFS pollution control issues. 

These models consider site-specific attributes including land use patterns and 

management practices. The availability of superior computing capabilities has enabled 

these models to simulate the real-life processes in significant detail. 

The simulation modeling approach, however, does not eliminate the problem of 

aggregation from field-scale to regional and watershed-scale. The heterogeneity of 

physical and hydrological factors as well as the regional production practices are so 

important in evaluating resource quality impacts, and that the aggregation has to be 

done carefully considering all these heterogenous factors. Antle and Capalbo (1991) 

show that the heterogeneity problem can be suitably addressed by defining the 

aggregate unit of analysis as a function of the problem context; for instance, the 

drainage area for which these process models are fabricated could represent the 

homogenous micro-unit of analysis. Joint statistical distributions for the production 

Biogeophysical models are becoming an increasingly important tool in applied 
agricultural economics research. Particularly, in research involving multidisciplinary 
efforts these are handy tools to capture the biogeophysical process impacts ex ante. 
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and pollution can be developed from this micro-unit, which can be integrated to the 

desired level of aggregation. 

Suppose the homogenous physical and hydrological factors of a site-specific 

simulation, which is usually the drainage area of the process model, is represented by 

the vector e. Assume that these physical and hydrological factors are fixed at a given 

point in time but are distributed across sites according to a distribution O,. Associated 

with the distribution of these environmental factors is a joint distribution of production 

practices Q and related resource impairments R. Represent this joint distribution as 

0 = 0(Q,R I prices, policy, technology, and 0,), (1) 

which then provides a statistical basis for aggregation at the same time retaining the 

heterogenous impacts from micro-units. 

EPICWVQ simulation model 

A consistent statistical framework for aggregation of resource quality impacts, 

from assessments at the micro-unit level to watershed scale was discussed at the 

outset. The next step is to choose a mathematical simulation model that is 

comprehensive in its treatment of various biogeophysical processes. That is, the 

chosen model must be able to assess simultaneously the impacts of management and 

environmental factors on crop production and soil and water quality. To our 

knowledge, the most comprehensive model available to date is the EPICWVQ (Erosion 

Productivity Impact Calculator and Water Quality) model developed by a 

multidisciplinary team of USDA. It is a time-tested model that has proved to be quite 
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useful, economical, and realistic in several applications, including evaluating impacts on 

water quality and soil erosion, both in US and around the world (Jones et al. 1991). 

The specific applications for which EPIC\WQ has been used include crop 

production, soil degradation, crop yield response to varying input levels and 

management practices, response to climate and soils, climate change and global 

warming, and water quality. It was originally designed to help DM's analyze alternative 

cropping systems, and project their socioeconomic and environmental sustainability 

with specific reference to soil erosion and productivity. The current version of 

EPIC\WQ includes a water quality component, namely the GLEAMS (Groundwater 

Leaching Effects on Agricultural Management Systems) water quality model, which 

allows simulation of pesticide degradation and movement in the soil. So, EPICNWQ can 

simulate the movement of pesticides and nutrients toward ground and surface waters, 

both in solute, and as applicable, sediment phases. . 

Specific design goals of EPICWVQ were: (1) to simulate the relevant 

biogeophysical processes simultaneously using readily available data and, where 

possible, accepted methodologies; (2) to simulate these processes , if necessary, over 

a long-term (100 years) as most of them are relatively slow processes; and (3) to be 

applicable to a wide range of soils, climates, crops, and chemicals. The design 

objectives of EPICWVQ are consistent with the current research objectives and it is 

clearly the most comprehensive tool to assess simultaneously the impacts of physical, 

hydrological, and management factors on crop production and soil and water 

resources. Furthermore, EPICWVQ has been calibrated to the site-specific parameters 

of the study area for the 1985 RCA analysis. Rural Clean Water Program (RCWP) 
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experiences suggest that the models must be carefully calibrated for site-specific 

parameters. EPIC\WQ is composed of the following ten major components: weather, 

hydrology, erosion, nutrient cycling, pesticide fate, soil temperature, tillage, crop 

growth, crop and soil management, and economics. Figure 4 is a schematic of the 

various components, their interactions, and input requirements. 

Sampling design 

On a regional and watershed-scale, the analysis using physical models is still 

unmanageable because of extensive simulations required to cover different soil, 

climate, hydrology, management, crop, chemical, and policy options. For instance, it is 

estimated that a quarter of a million simulation runs are required to cover 1200 soil 

types recorded in the S0ILS5 (Soil Interpretation Records [SIRS]) database, 3 different 

weather stations, 8 major tillage and conservation practices, and 7 crops prevalent in 

the study watershed. This extensive coverage is required to capture the heterogeneity 

of the physical environment as well as the agricultural production practices so that a 

meaningful aggregation of site-specific assessments is possible. Because of resource 

limitations, time and money, such an extensive simulation plan is impracticable. 

Alternatively, a spatial-sampling design which will reduce the simulation runs 

considerably, and at the same time retain the statistical validity of aggregation and 

extrapolation into the population (the word population is used to denote the aggregate 

from which the sample is chosen) is suggested here. 

The results from sample simulation are, however, subject to some uncertainty 

because only part of the population has been simulated and because of errors of 
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Figure 4. An outline of the EPICWVQ simulation model 
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measurement. This uncertainty can be reduced by increasing the sample size, which 

usually costs time and money. There is a tradeoff between the degree of precision 

needed and resources that could be spent. The fact that the sample simulation results 

will be used for analytical rather than descriptive evaluation is also recognized in 

choosing the sampling design. The design is based on probability sampling so that the 

frequency distribution of the estimates, if repeatedly applied to the same population, 

can be observed. A schematic outline of the simulation plan development is shown in 

Figure 5. A brief description of the major components in this plan is what follows. 

The S0ILS5 database used to sample soil is the same database used to calibrate 

EPIC. For the watershed, this database has layered (soil profile) information for 

[1200*p] soil\USDA-texture types, where p is the number of soil profiles. A straight 

forward sampling method is to use a simple random sampling, that is selecting n units 

out of the N such that every one of the distinct samples has an equal chance of 

being selected. For our purpose this method is less precise^^ because the soil 

information is layered with properties of each profile varying both within and across the 

soil types. A typical soil is characterized by soil profiles; physical factors, such as clay, 

sand, silt, permeability, organic matter content, pH, and bulk density; erodibility 

factors, such as k-factor, k,-factor, and slope; hydrological factors, such as hydrologie 

groups A to D (classified based on the rate of infiltration, with soils in A group having 

the maximum infiltration and soils in D group having the minimum infiltration) and 

available water. EPIC requires, at a minimum, layered information on 

The precision of any estimate made from a sample depends both on the method 
by which the estimate is calculated from the sample data and on the plan of sampling. 
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the following soil properties: clay, silt, organic matter, bulk density, permeability, 

available water, pH, and k-factor. Therefore, stratified random sampling with a 

complete factorial design was used. If intelligently used, stratification nearly always 

results in a smaller variance for the estimated parameters compared to a simple random 

sample (Cochran 1977). 

The [1200*p] soil/texture types were aggregated into [573*p] soil types by 

taking a weighted average across USDA texture classes, with proportion of each 

texture class acreage as the weight. This is further aggregated across soil profiles into 

573 unique soil types using profile-depth as weights. The next step is to limit the 

number of factors (soil properties) that will be considered in the sample allocation 

thought to be most important. Simple correlation estimates between the factors 

were used as a guide to restrict the set of factors that will be used to determine the 

allocation. Important EPIC soil inputs was also used as guide in limiting the soil factors 

to be considered for sample allocation. Five soil factors, namely clay, bulk density, 

permeability, pH, and k-factor were identified. The selected factors were stratified into 

three levels, as high, medium, and low, and 4 units were sampled from each of the 15 

strata (3 levels and 5 factors) without replacement. This stratification, where the 

sampling fraction is the same in all strata, is described as stratification with 

proportional allocation. It gives a self-weighting sample. The sampling proportion is 10 

percent in terms of soil types and 56 percent in terms of arable land. Soil selection 

within each stratum was such a way that the probability of selection was proportional 

Since the best allocation for one factor will not in general be best for another, 
some compromise must be reached in a sampling design with several factors. 
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to the number of acres of arable land. The distribution of hydrologie groups in the 

sample parallels the population distribution. 

In summary, the resulting sample of soil types was self-weighting (soils in all 

levels of each property are represented at similar proportions), balanced (each 

cultivable acre in the watershed had equal probability of selection), and representative 

of the population of soils in the watershed. The relative frequency distribution of the 

sampled soil factors in the sample vis-a-vis population is shown in Figure 6. The 

sample and population means and standard deviations are also reported. Table 1 

shows the major sample and population attributes. The summary statistics and the 

frequency distributions confirm uniform and representative allocation. 

Table 1. The sampling proportion and the distribution of hydrologie groups 

Item Population Sample 

Number Percent Number Percent 

Sampling Proportion 

Unique soil types 573 57 (10%) 

Area in million acres 34 19 (56%) 

Hydrologie Groups 

Group A 34 6% 1 2% 

Group B 402 70% 46 81% 

Group C 98 17% 8 14% 

Group D 39 7% 2 3% 

Note: Figure in parenthesis is the sampling proportion. 
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Table 2 lists the complete set of soils sampled and their properties, coverage, and also 

the associated weather station. 

Another major component that needs consideration in sampling design and 

allocation for the EPIC simulation plan is weather. Daily precipitation, amounts, 

maximum and minimum temperatures, solar radiation, wind velocity and direction, and 

relative humidity are the important weather factors used in EPIC simulation. Based on 

historically observed meteorological data, the watershed can be grouped into iso-

climatic zones. Since a given soil type may be in more than one zone it becomes 

necessary to do as many simulations for as many climatic zones in the watershed. 

This approach precipitates our objective of reducing the number of simulation runs. 

Therefore, an alternative approach of allocating the sampled units to one of the two or 

more climatic zones, where the allocation is based on the area of each soil type in each 

of the zones. The EPIC model has the option of reading actual daily weather data or 

generate weather data using internally built stochastic weather generators or a 

combination of both. For actual weather data we have the option of choosing from 

EPIC weather stations (Des Moines, Dubuque, and Madison) or major land resource 

area (MLRA) weather stations. Since the model has been calibrated for EPIC weather 

stations and since the three dominant MLRA's in this watershed fall in the "EPIC 

climatic zones" we distributed the soil sample based on the EPIC weather station's 

location and coverage. A soil type may fall in more than one EPIC weather station. In 

such cases the following scheme was adopted. Weather station assigned for the soils 

appearing in more than one location is the one in which the soil has maximum acreage. 
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Table 2. List of sampled soils, hydrology, acreages, and selected properties 

Soil 
Type 

Bydrol. 
Group 

Area 
ao. 

Clay Bulk dens 
gms/co 

Fameab 
In/sec 

Orĝ Mat k-factor pH Avl.water 
inches 

Weather 
Station 

CHELSEA A 126925 10.6 1.53 13.0 0.8 0.17 6.45 0.12 DBU 
COLHOOD B 13499 14.3 1.50 1.0 5.5 0.40 7.44 0.18 MDS 
SEATON B 150708 17.4 1.35 3.8 0.7 0.32 6.12 0.18 DBU 
CLARION B 1672141 20.3 1.56 1.3 1.0 0.35 7.29 0.19 DSM 
KENÏON B 606390 23.6 1.54 1.3 1.4 0.29 6.52 0.19 DBU 
WACOUSTA B 57993 26.0 1.31 1.3 2.7 0.37 7.58 0.21 MDS 
STORDEN B 208244 23.8 1.49 1.3 0.6 0.36 7.90 0.18 DSM 
DOWNS B 876052 25.0 1.35 1.5 0.7 0.40 6.20 0.20 DBU 
MUSCATINE B 446134 27.8 1.33 2.2 2.0 0.38 6.46 0.19 DBU 
WEBSTER B 1044075 27.7 1.49 1.3 3.5 0.30 7.40 0.18 DSM 
COLO B 709936 31.1 1.32 1.3 3.8 0.29 6.51 0.20 DSM 
ROCKTON B 108270 28.7 1.40 4.7 4.0 0.28 5.90 0.20 DBU 
NICOLLET B 1120691 27.5 1.33 1.3 6.0 0.30 7.09 0.18 DSM 
TAMA B 1504595 23.9 1.33 3.4 1.1 0.35 6.17 0.18 DBU 
NIRA B 90900 32.0 1.35 1.3 0.9 0,41 5.86 0.20 DSM 
DUBUQUE B 483630 36.1 1.38 0.8 0.9 0.35 6.04 0.17 MDS 
FAYETTE B 1853921 25.3 1.42 2.2 0.5 0.39 5.83 0.18 DBU 
COLAND B 243829 28.1 1.48 1.8 4.1 0.25 6.76 0.20 DSM 
KENDALL B 20961 26.2 1.42 1.3 0.6 0.37 '6.23 0.19 MDS 
CANISTEO B 1019591 27.4 1.43 1.3 6.0 0.30 7.90 0.17 DSM 
BOLAN B 40775 13.2 1.54 6.0 1.3 0.22 6.37 0.14 DBU 
ARMSTRONG C 143939 39.8 1.54 0.4 0.7 0.32 5.97 0.15 DSM 
CLYDE B 627483 24.3 1.56 1.7 3.1 0.33 6.98 0.19 DBU 
UDOLFHO B 40275 14.4 1.55 6.2 2.9 0.25 6.43 0.13 DBU 
SEYMOUR C 29035 39.4 1.44 0.4 1.0 0.35 6.14 0.18 DSM 
GARA C 354570 31.1 1.64 0.4 0.6 0.33 6.10 0.17 DSM 
TAINTOR C 164851 33.4 1.38 0.6 2.2 0.36 6.46 0.20 DSM 
OUNBARTOH 0 73952 37.7 1.34 1.0 2.0 0.34 6.78 0.20 DBU 
DINSDALE B 426103 27.6 1.49 1.3 1.4 0.40 6.57 0.19 DBU 
SAWMILL B 146304 29.3 1.35 1.3 2.3 0.28 7.01 0.20 DBU 
ELY B 190869 28.6 1.35 1.3 3.0 0.37 6.75 0.20 DBU 
NODAWAY B 263277 24.6 1.31 1.3 1.3 0.39 6.70 0.21 DSM 
FLANO B 232413 24 1.39 2.5 1.3 0.37 6.57 0.18 MDS 
RINGWOOD B 41662 20.7 1.45 2.4 1.2 0.33 7.17 0.16 MDS 
GARWIN B 99942 25.2 1.35 3.4 2.2 0.3 6.79 0.18 DBU 
CLINTON B 434178 32.7 1.41 0.9 0.6 0.37 5.77 0.19 DSM 
LADOGA B 422206 32.6 1.36 0.9 0.9 0.41 5.83 0.20 DSM 
SHARFSBURG B 262883 32.7 1.39 1.1 1.3 0.41 6.00 0.20 DSM 
LAWLER B 113064 14.9 1.56 9.8 1.9 0.19 6.17 0.12 DBU 
REAOLYN B 231766 22.7 1.57 1.3 2.7 0.30 6.43 0.19 DBU 
EDMUND D 66389 38.6 1.44 0.9 2.2 0.31 6.70 0.18 DBU 
NORDNESS B 192902 24.2 1.38 0.4 1.4 0.33 6.58 0.17 DBU 
FLOYD B 403604 20.4 1.56 1.8 2.1 0.30 7.00 0.17 DBU 
WARSAW B 51954 15.6 1.49 8.9 1.3 0.21 6.99 0.12 MDS 
OSSIAN B 17671 24.9 1.33 1.3 3.4 0.28 7.14 0.22 DBU 
SAYBROOK B 107066 27.4 1.49 1.1 0.8 0.36 7.03 0.17 MDS 
SAUDE B 137782 11.0 1.54 12.0 1.3 0.17 ,5.92 P.11 DBU 
DICKINSON B 204654 9.7 1.59 9.5 0.6 0.18 6.10 0.08 DBU 
SHAFFTON B 20184 14.9 1.62 8.6 1.2 0.22 5.96 0.12 DBU 
DRUtMER B 241551 27.4 1.35 1.4 1.7 0.28 6.91 0.20 MDS 
HARPS B 273072 26.0 1.48 1.3 2.4 0.30 8.06 0.19 DSM 
ADAIR C 124236 40.6 1.58 0.3 0.8 0.32 6.27 0.15 DSM 
OTIOSEN B 71341 31.2 1.53 0.8 2.4 0.31 7.30 0.19 DSM 
KESWICK C 110494 38.7 1.58 0.4 0.7 0.37 5.73 0.14 DSM 
FRANKLIN B 43277 25.4 1.55 1.3 1.3 0.36 6.19 0.19 DBU 
THERESA C 41865 18.5 1.68 0.9 2.0 0.37 7.47 0.14 MDS 
GRUNDY C 125095 35.2 1.38 0.3 0.9 0.37 6.34 0.17 DSM 
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To evaluate the environmental impacts of alternative BMPs the simulation plan 

should include alternative and feasible management and cultural practices. The 

following are the major crops grown in this watershed: corn grain, soybeans, sorghum, 

winter wheat, oats, corn silage, legume hay, and nonlegume hay. The four common 

tillage practices are: conventional tillage with fall plow, conventional tillage with spring 

plow, reduced tillage, and No-till. The two conservation practices evaluated are the 

straight row and contour cropping practice. The tillage practices are defined as 

follows. Fall plow is a clean conventional tillage which leaves no residue cover. Spring 

plow leaves 30 percent residue cover in the field after harvest and the soil is tilled in 

the spring months following the harvest. Reduced or ridge till leaves 30-70 percent 

residue cover on the soil surface after planting. No-till refers to zero tillage with more 

than 70 percent residue cover and planting is completed by only disturbing a narrow 

seed bed of 1 to 3 inches. 

The strategy followed in simulating the cultural practices is a combination of 

single crop and crop rotation systems. Specifically, continuous corn, corn-soybean 

rotation, small grains (oats and winter wheat), legume and nonlegume hay, corn silage 

and sorghum are the alternative cultural practices simulated. The crop rotational 

impact is particularly significant for nutrient cycling and to some extent on soil loss. 

There is no demonstrated evidence of impacts of crop rotation and herbicide use. The 

crop growth component of the EPIC was fertilized with optimum nitrogen (N) and 

phosphorus (P) application rates. These rates were taken from Tillage Update 

published by the Resource and Technology Division, Economic Research Service, 



www.manaraa.com

77 

USDA. The data on the amount of residue left in the field under alternative tillage 

systems was also obtained from the same source. 

The schedule of operations— management, tillage, and harvest— were taken 

from FEDS (Firm Enterprise Data System) budget. Most of the crops grown in this 

watershed are rainfed, therefore, irrigation practice is not simulated. Atrazine 

application in corn and sorghum, applied as early preplant and postemerge, was 

simulated. An application rate of 1 kilogram per hectare (kg/hac) was used. 

Preliminary sensitivity analysis of EPIC with different application rates suggest that the 

atrazine loading was linear in application rate. Atrazine is the most widely used 

herbicide for corn and sorghum production and the most commonly encountered in 

ground and surface waters. Atrazine is also the most compatible herbicide for 

conservation tillage systems. In 1989, 40 percent of the corn acres was treated with 

atrazine, with more than 80 percent of which being applied as preplant and postemerge 

(Duffy and Thompson 1991). Atrazine is detected in surface and groundwater samples 

monitored across the United States (USEPA 1990). Tables 3 to 6 presents a complete 

description of the management operations for the alternative crops. 

The Economic Model: A Regional LP Model 

The agricultural economic decision system is described at the environmentally 

meaningful level, namely the watershed. Specifically, the hydrologie unit representing 

the water resources aggregate sub area 703 (PA 41) is the model's regional 

delineation. The political and the major land resource area configuration of the study 

area, is shown in Figure 7. 
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Table 3. The management and harvest schedule for corn grain by tillage systems 

Date Machinery / Field operation Conv.till 
fall plow 

Conv.till 
spg.plow 

Reduced 
till 

No-till 

4-15 Shredder X 

4-15 Moldboard Plow X 

4-15 Tandem Disk X X X 

5-1 Tyne Harrow X X X 

5-1 Field Cultivator X X 

5-1 Atrazine Application X X X X 

5-5 Row Planter X X X x" 

5-5 N-fertilizer (Ibs/ac)** 120 120 132 129 

5-5 P-fertilizer (Ibs/ac)'* 55 55 58 55 

6-5 Rotary Hoe X X x" 

6-5 Row Cultivator X X X 

11-10 Combine Corn X X X X 

11-10 Shredder X 

11-15 Moldboard Plow X 

11-15 Chisel Plow X 

Crop Residue** 2% 15% 37% 61% 

'Mini-till planter. """RTD Updates- Tillage Systems". "Rolling cultivator. 

Note: An x indicates use of that machinery / operation under that tillage. 
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Table 4. The management and harvest schedule for soybeans by tillage systems 

Date Machinery / Field operation Conv.till 
fall plow 

Conv.till 
spg.plow 

Reduced 
till 

No-till 

4-15 Shredder X 

4-15 Moldboard Plow X X 

4-16 Tandem Disk X X 

4-16 Chisel Plow X X 

4-20 Field Cultivator X X 

4-20 Spike Harrow X X X 

5-1 Tandem Disk X X X 

5-1 Spike harrow X X 

5-5 Row Planter X X X X" 

5-5 N-fertilizer (Ibs/ac)"" 18 18 27 26 

5-5 P-fertilizer (Ibs/ac)'' 42 42 48 52 

6-15 Rotary Hoe X X x" 

6-15 Row Cultivator X X 

10-15 Combine Beans X X X X 

10-15 Shredder X 

11-1 Moldboard Plow X 

Crop Residue'' 2% 14% 39% 68% 

'Mini-till planter. ''"RTD Updates- Tillage Systems". "Rolling cultivator. 

Note: An x indicates use of that machinery / operation under that tillage. 
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Table 5. The management and harvest schedule for sorghum, oats, and winter wheat 

Date Machinery / Field operation Conv.till 
fall plow 

Conv.till 
spg.plow 

Reduced 
till 

No-till 

SORGHUM 

4-15 Moldboard Plow X X' 

5-1 Tandem Disk X X X 

6-1 Field Cultivator X X 

6-1 Atrazine Application X X X X 

6-5 Planter X X X x" 

6-5 N-fertilizer (Ibs/ac) 88 88 101 101 

6-5 P-fertilizer (Ibs/ac) 35 35 40 40 

7-5 Row Cultivator X X X X 

10-10 Combine Grain X X X X 

11-15 Moldboard Plow X 

OATS 

4-1 Tandem Disk X 

4-1 Offset Disk X X X 

4-15 Spike Harrow X X 

4-15 Grain Drill X X X X 

4-15 N-fertilizer (Ibs/ac) 34 34 34 39 

4-15 P-fertilizer (Ibs/ac) 18 18 18 18 

8-15 Combine Small Grain X X X X 

9-15 Shredder X 

9-15 Tandem Disk X 

WINTER WHEAT 

6-15 Combine Small Grain X X X X 

9-1 Tandem Disk X X 

10-1 Tandem Disk X X X 

10-5 Small Grain Drill X X X X 

10-5 N-fertilizer (Ibs/ac) 69 69 48 61 

10-5 P-fertilizer (Ibs/ac) 34 34 27 38 

Residue 2% 14% 39% 56% 

'Chisel plow. ''Mini-till planter. 
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Table 6. The management and harvest schedule for corn silage and hay by tillage 

Date Machinery / Field operation Conv.till Conv.till Reduced No-till 
fall plow spg.plow till 

Corn Silage 

4-15 Shredder X 

4-15 Moldboard Plow X 

4-15 Tandem Disk X X X 

5-1 Tyne Harrow X X X 

5-1 Field Cultivator X X 

5-1 Atrazine Application X X X X 

5-5 Row Planter X X X X* 

5-5 N-fertilizer (Ibs/ac)'' 129 129 141 139 

5-5 P-fertilizer (Ibs/ac)'* 71 71 74 71 

6-5 Rotary Hoe X X x" 

6-5 Row Cultivator X X X 

11-10 Silage Harvester X X X X 

11-10 Shredder X 

11-15 Moldboard Plow X 

11-15 Chisel Plow X 

Residue** 2% 14% 39% 68% 

Legume Hay 

4-1 N-fertilizer(lbs/ac) 13 13 13 13 

4-1 P-fertilizer(lbs/ac) 47 47 47 47 

6-1 Sickle Mower X X X X 

6-1 Harvester X X X X 

7-1 Sickle Mower X X • X X 

7-1 Harvester X X X X 

7-15 Moldboard Plow X 

8-15 Tandem Disk X X 

9-1 Harrow Spike X X 

9-1 Grain Drill X X X X 

•Mini-till planter. ''"RTD Updates- Tillage Systems". "Rolling cultivator. 
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MLRA 

Figure 7. The political and major land resource area configuration of the study area 
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The Resource Adjustment Modeling System (RAMS) developed by the CARD to 

provide the economic Interface for CEEPES, constitute the basic agricultural economic 

decision unit (Bouzaher et al. 1991). RAMS Is a regionally delineated linear 

programming, comparative static, and partial equilibrium model. Since RAMS provides 

significant production and management detail with government program and a weed 

control subsector, it has become a vital model for evaluating agricultural chemical 

policy impacts on crop mix and other production decisions. The crop production 

relationships in RAMS are modeled to capture crop rotation, tillage, and conservation 

effects. The model is useful for short and medium term analysis. Besides having 

applications in corn herbicide policy analysis it is also used to simulate a cover crop 

scenario for carbon sequestration project. A nutrient sector is added to simulate fate 

and transport of nitrogen and phosphorus in groundwater and surface water. 

The linear programming model is a set of mathematical relationships 

incorporating characteristics most relevant to agricultural production, resource use, and 

response to economic factors and policy options (Hazell and Norton 1986). RAMS is a 

short-run, static profit maximizing model with exogenous input and output prices. The 

objective function measures short-run total net profit, which is equal to the difference 

between total returns from the government programs and marketing, and the total 

costs from production, weed control, and buy-inputs sub-sectors. RAMS is developed 

to determine optimal patterns of resource use and production practices, following 

traditional regional LP models (Burton and Martin 1987). A detailed weed control 

subsector linked to crop production through herbicide management practices, 

productivity response, resource use, and chemical cost is incorporated to simulate 

substitution between the chemical and mechanical weed control methods. 

Constancy of technology through the planning period is assumed in RAMS. This 

justifies holding input and output prices and basic resource levels constant. The 

resource and production levels are assumed to be representative of a large number of 
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relatively homogenous farms, so that they are aggregated over a geographically 

homogenous area. Not withstanding this, the RAMS model is open to aggregation 

bias. Aggregation bias exists when the microeconomic behavior of the RAMS modeling 

structure is transformed into aggregate market behavior. In general, the set of 

conditions for exact aggregation are highly stringent. Given that aggregation bias is a 

pervasive problem with regional modeling systems, RAMS is designed to minimize the 

aggregation bias to the extent possible. 

Geographically defined production areas are the basic unit of production. Within 

a PA, a unique land group definition representing aggregated MLRA is used. That is, an 

MLRA is aggregated over eight major RCA (Resource Conservation Act) land groups 

defined according to USDA land capability classes and subclasses. This aggregation 

process was carried through and reflected in the technological coefficients of RAMS, 

and most importantly in the yield effects of weed control alternatives. RAMS treats 

highly and nonhighly-erodible land separately for modeling conservation compliance. 

RAMS activities are grouped under the following four sub-sectors: 

1. The crop production activities are defined as acres of nonirrigated crop rotations, on 

highly and nonhighly erodible land, and under one of four tillage practices (conventional 

till fall plow, conventional till spring plow, reduced till, and no till) and two conservation 

practices (straight row and contour). Since the study watershed (PA-41 ) is a fully 

nonirrigated agricultural area, irrigation practice is not included. Eighteen major crop 

rotations covering 8 major crops (corn grain, corn silage, soybeans, oats, winter wheat, 

sorghum, legume hay, and nonlegume hay) are included in RAMS. These activities 

represent the complete set of current practices in this watershed; therefore, they are 

associated with base input use, yields, and production costs and returns, derived from 

cropping practices survey (USDA 1993). 
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2. The government program activities are defined in relation with the production 

activities. Conservation reserve, deficiency payment, base-loss penalty are the 

program activities defined. 

3. The buy-Inputs and marketing activities are defined for principal variable inputs 

labor, fertilizer, and chemical and for all crops including program crops. Thus, except 

for land, which is physically constrained, all other major input levels are endogenously 

determined through the buy-input activity. 

4. The weed control activities are modeled as acres of herbicide treated acres and 

chemical activities, representing amounts of individual chemicals. These activities are 

defined by tillage and soil type (sand or clay). Each weed control activity is defined as 

a strategy, which is a set of information on primary and secondary herbicide treatments 

including nonchemical control, effectiveness, yield loss, and cost (Bouzaher et al. 

1992). Totally, there are 488 weed control strategies for corn and 148 strategies for 

sorghum, which allows for substitution between herbicides and between herbicide and 

mechanical weed control. 

The four major sectors described above are interrelated through the use of 

resources and physical constraints defining RAMS. Physical constraints define 

availability of total land, highly erodible land, CRP land, and commodity program base 

acreage. Besides the physical constraints, flexibility constraints are incorporated for 

calibration purposes. The flexibility constraints enable the model to determine resource 

and management practice levels to conform to historical levels. It also helps to 

diversify herbicide use conforming to current use levels. This is particularly useful 

because it eliminates the model's tendency to choose only one weed control strategy 

that is relatively cheap and effective. A complete mathematical description of the 

RAMS model is shown in Appendix 2. 
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System Integration 

There are two levels of integration that needs to be achieved to integrate the 

diverse economic and environmental models. The first level of integration concerns 

bringing together the multidisclplinary models through some unification technique. A 

novel and efficient unification technique is provided by metamodeting (Blanning 1975 

Bouzaher et al. 1993). The word meta meaning derived, and the metamodels are 

models derived from another model in the hierarchy. Metamodels are reduced form 

response functions fitted to the outputs of complex mathematical models to ease the 

computational burden of integrated analysis of diverse models. The second level of 

integration concerns the aggregation of parameters of the biogeophysical process 

models, which are mostly at the homogenous soil level in a field, to the level desired by 

the multicriteria decision making model. This is a very crucial process in NFS pollution 

measurement because of extensive spatial heterogeneity. Ignoring spatial 

heterogeneity will bias the results and policy conclusions. 

IMetamodeling 

Ideally, water quality monitoring should provide policy analysts with the needed 

information. But due to high monitoring costs, mathematical models are generally used 

to simulate the physical processes that describe the agricultural chemical movement in 

soil and predict their concentrations in groundwater and surface water (Wagenet and 

Hutson 1991). Use of these process models is economical and practical for site-

specific problems only (Evans and Myers 1990). To use these field-scale models for 

regional water quality assessments we have to simulate them for the area-wide 
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distribution of soil and weather parameters. But it is costly and time consuming to do 

area-wide simulation for all combinations of crop, chemical, management practice, and 

technology. Therefore, building metamodels from process model outputs is a viable 

and manageable option, which is statistically valid. 

Furthermore, to evaluate a new policy within a regional integrated modeling 

system, we have to repeat the simulation runs for all combinations of factors used in 

the baseline evaluation. For instance, a policy scenario in an Integrated modeling 

system requires a mutually consistent combination of policy, environmental, chemical, 

management, and technological parameters and behavioral equations. Integrated 

systems analysis requires both timely integration of diverse process models and 

integration of outcomes over a distribution of diverse input sets. Therefore, a 

simplified technique to ease the computational burden while abstracting the key 

process characteristics is needed. Metamodels are simple, but statistically validated, 

analytical tools capable of addressing both of these difficulties. 

Metamodeling is a statistical method to abstract away from unneeded detail for 

regional analysis by approximating outcomes of a complex process model through 

statistically validated parametric forms. The simplification provided by metamodels 

allows us to evaluate the consequences of alternative policies without the need for 

additional simulations. If the complex simulation model is a tool to approximate the 

underlying real-life system, the analytic metamodel attempts to approximate and aid in 

the interpretation of the simulation model and ultimately the real-life system. Empirical 

application of metamodels in industrial, computer, and management fields is 

documented in Kleijnen (1987). To our knowledge, use of metamodels in agri-
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describing the fate of agricultural chemicals, is fairly new. 

A metamodel is a regression model explaining the input-output relationship of a 

complex simulation model, which is a mathematical model structured to mimic the 

underlying real-life process. Let 0 be the unknown function which characterizes the 

underlying real phenomena relating the response y to the input vector v: 

y = <p{M). (2) 

Most simulation models mimic outcomes for a variety of possible response variables, 

and specification of the response of interest may not be trivial matter. 

A simulation experiment is a set of executions of the simulation models intended 

to approximate the values of y associated with a specified set of input vectors. The 

output of a simulation experiment is a data set consisting of specified input vectors and 

their associated responses, as determined by the simulation model. Choice of the 

number and values of input vectors for which the simulation model will be executed is 

the subject of experimental design. For statistical purposes, it would be preferable to 

experiment with the real-life system rather than a simulation model of the system. In 

that case we would have a statistical model of the system rather than a metamodel. 

This approach is not adopted because it would mean incurring the cost and delay of 

waiting, in this case for 15 years of weather to present itself to the real-life system. 

Given the output of a simulation experiment, we can specify an analytic 

metamodel with relatively few inputs, x^ through x^. Let the metamodel explaining the 

simulated outcome be represented as: 

y = 0(x,, Xj, ..., Xk, u), (3) 
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where u is the stochastic disturbance term. We can use statistical procedures to 

identify and estimate the function 0 describing the metamodel. Because of their simple 

and precise representation of the complex mathematical model, simulation practitioners 

are favoring metamodels for purposes such as validation, sensitivity analysis, 

estimation of interactions among inputs, control, and optimization, without the need for 

additional simulation runs (Kleijnen 1987). 

The long-term average values (average over 15 years of simulation) of 

environmental indicators, such as soil erosion, nitrate-N in runoff, leaching losses of 

nitrate-N, soluble P in runoff, atrazine in runoff, and leaching losses of atrazine, 

predicted by EPIC are at the micro-unit level. Fifteen years of simulation was 

considered to be long enough to capture the long-term average, because empirical 

evidence suggest that the time series values of these parameters reach a steady state 

after 10 years. To capture the spatial and production heterogeneity within the 

multicriteria decision model the following aggregation scheme was adopted. 

Metamodels are very essential part of this aggregation, without which timely evaluation 

of NPS pollution policies is not possible. The estimated metamodels are extrapolated 

to the population of soils in the study area to get predictions for each of the 

environmental indicators. This is the novel and the challenging aggregation technique 

attempted so far in analytical works involving environmental models, with the 

exception of CEEPES. The superiority of the CEEPES integrated modeling framework 

lies in its ability to capture the spatial heterogeneity. These population estimates can 

be used to target hot-spots for prescribing site-specific resource quality standards. 
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Because the decision making unit is configured at the PA level, these predictions 

are aggregated to the PA level by taking a weighted average. The weights are the 

amount of arable acres under each of those soil types. A major assumption is that the 

different production and management practices and crops are supported in each and 

every soil in the same proportion. 

The Empirical Multicriteria Decision IVIodel 

The multicriteria decision making model is a mathematical programming model, 

which finds a best-compromise solution simultaneously given a set of economic and 

environmental objectives. Five environmental objectives representing (1) soil loss from 

water erosion (EROSI), (2) nitrate-N in runoff (NRUF), (3) nitrate-N in percolate below 

soil profile (NLCH), (4) atrazine in runoff (ARUF), and (5) atrazine in percolate below 

soil profile (ALCH), are included in the multicriteria decision making model. These are 

the principal NFS pollution indicators related to crop production in this study area, 

which are of concern to the society at present. The economic objective measures 

short-run net profit defined as total returns, including returns from CRP and deficiency 

payments, net of cost of crop production activities, which includes cost of weed 

control activities. The full specification of the multiobjective model is: 

MAX; Profit = 

- È E Ê . X/WD^ 
V"! m*^ /"I *"1 

[Cos? of Production 
Activities] 
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+ RCRD * XCRP [Return from CRP'i 

+ 2^ RDP^ • XDP, {Deficiency Payment] 
9-1 

9/ 
+ RSELL^ * XSELL^ [Return from i\/larl(eting] 

g-1 

MIN; Soil Loss = 

È E É E v»1 /n-1 /"I *"1 

MIN: Nitrate N in Runoff = 

È E Ê E •*•««'"1. • 
V"1 /n-1 /•! *•! 

MIN; Nitrate-N Leaching = 

1 2 4 18 

E E E E . NLCH  ̂
y-l m«1 /"I *"1 

MIN; Atrazine in Runoff = 

1 2 4 18 

E E E E v-l m«1 /-I *-1 

MIN; Atrazine Leaching = 

1 2 4 18 

E E E E • alch^ 
v*1 m"1 /"I ^"1 
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The summation index v is irrigation practice, m is conservation practice, j is tillage 

practice, and k denotes crop rotation. The definition of the variables and indices in the 

economic criterion function are the same as in Appendix 2. The coefficients of the 

environmental indicators will be derived as explained in the previous section on system 

integration using baseline production levels. For this purpose the baseline is carefully 

simulated and calibrated to the actual production reported in extension publications. 
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CHAPTER V. RESULTS AND DISCUSSION 

This chapter is organized into two major sections. The first section summarizes 

the EPIC\WQ model results of long term average values of environmental indicators, 

briefly describes metamodel development process and the estimated metamodels for 

each of the environmental indicators. The results from extrapolating these metamodels 

to the population of soils in the study region are also shown. These results are 

summarized as cumulative frequency distribution of nonpoint pollution indicators for 

alternative tillage and conservation practices, for the two major crop rotation 

systems—continuous corn and corn soybean cropping system. The method of 

aggregation of environmental indicators, from soil-space scale to watershed scale, to 

get the coefficients for the environmental indicators for the economic-environmental 

decision model is also discussed. The second section elaborates the alternative policy 

scenarios and the economic and environmental impacts and tradeoffs as indicated by 

the multiple objective scenario analysis. The scenario results are used to develop 

tradeoff relationships between economic returns, soil quality, groundwater quality, and 

surface water quality. The implication of these tradeoffs from a general welfare stand 

point is also discussed. 

EPIC and Metamodel Results 

Summary of simulation results from EPIC 

Using the EPIC\WQ model, which was calibrated to the study region based on a 

comparison of simulated and historical crop yields, the soil erosion and chemical and 
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nutrient runoff / leaching processes were simulated for seven different crop and crop 

rotations—continuous corn, corn soybean, oats, winter wheat, sorghum grain, corn 

silage, and legume hay. Four alternative tillage practices—conventional tillage with fall 

plow, conventional tillage with spring plow, reduced tillage, and no-till— and two types 

of conservation practices the straight row and contour were simulated for each of the 

crop and crop rotations. The physical process model was simulated over 15 years 

using actual historical weather data from three representative weather stations in the 

study watershed. Preliminary calibration runs suggested that the environmental 

indicators reached steady state after 8 to 10 years, therefore by simulating over 15 

years we are fully capturing the impact of different weather cycles and hence predict 

the long term average values. 

The long term average soil loss and chemical and nutrient emissions were 

recorded for the 57 representative soil types sampled from the watershed. This is a 

novel procedure which allows us to capture the spatial heterogeneity of physical 

processes by expending reasonable amount of time and computer resources. The 

model was simulated using optimal fertilization rates.where the rates are obtained from 

a Resource and Technology Division survey of cropping practices. Only preemerge and 

postemerge application of atrazine to corn and sorghum was simulated using an 

application rate of 0.9 pounds active ingredient (lbs. a.i.) per acre. Sensitivity test runs 

of EPIC to alternative application rates of atrazine showed linear relationship between 

atrazine emission and the rate of application. Therefore, we assume this linear 

relationship to hold in our estimated metamodel predictions. 
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The summary statistics—mean, standard deviation, minimum, and maximum— 

of EPIC simulated soil loss for alternative cropping and management practices is shown 

in Table 7. Soil erosion as measured by the modified universal soil loss equation 

(MUSLE) is reported here/^ The amount of soil erosion is significantly smaller for no-

till and reduced till compared to conventional till. The mean soil loss for no-till corn and 

corn-soybean rotation was lower by 90 and 70 percent, respectively. Contouring 

reduced soil loss by 40 to 50 percent under all tillage and cropping practices. 

Simulated soil erosion indicate that corn-soybean rotation is the most erosive cropping 

system followed by sorghum, continuous corn, oats and winter wheat. Soil erosion 

from a corn-soybean rotation is often greater than from a continuous corn because of 

loss of residue cover after soybean harvest, exposing the top soil to the impact of 

raindrops and the deterioration of the soil aggregate stability associated with soybean 

cropping (Corak and Kaspar 1990). Since oat is an important cover crop with root 

structure anchoring surface residues and soil it is the least erosive crop. 

The simulated nitrate-N emissions in runoff and percolate are summarized in 

Table 8 and 9, respectively. The mean concentration of nitrate-N in runoff is lower 

under no-till and reduced till practices compared to conventional till, while the 

concentrations in percolate were higher for reduced and no-till systems than the 

conventional tillage. This result is supported by the actual measurements at the Iowa 

The MUSLE uses runoff variables to simulate erosion and sediment yield. The 
equation is specified as: Z = (R*K*LS*C*P) * 0, where R is the coarse fragment 
factor, K is the soil erodibility factor, LS is the slope length factor, C is the crop 
management factor, P is the erosion control practice factor, and 0 is a function of 
runoff volume and peak runoff rate. 
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Table 7. Simulated long term average soil erosion (tons/ha) by cropping systems 

Cropping Conservation Tillage Standard 
System Practice Practice Mean Deviation Minimum Maximum 

Continuous Straight Row Fail Plow 69.28 93.27 0.58 670.26 
Com 

Straight Row 
Spring Plow 64.55 85.30 0.47 609.39 
Reduced Till 48.27 101.78 0.20 761.92 
No-Till 6.49 22.51 0 156.34 

Contour Fall Plow 34.33 88.61 0.06 639.27 
Spring Plow 29.43 74.92 0.05 548.48 
Reduced Till 19.47 53.65 0 385.96 
No-Till 3.05 11.34 0 80.26 

Corn- Straight Row Fall Plow 90.05 103.83 0.99 721.27 
Soybeans 

Straight Row 
Spring Plow 80.13 89.65 0.88 614.37 
Reduced Till 70.80 113.02 0.61 842.89 
No-Till 26.71 51.22 0.16 382.50 

Contour Fall Plow 41.07 93.38 0.13 685.10 
Spring Plow 37.29 87.80 0.11 647.06 
Reduced Till 28.71 65.58 0 476.26 
No-Till 11.56 33.43 0.02 246.27 

Oats Straight Row Fall Plow 20.85 23.96 0.11 162.63 Straight Row 
Spring Plow 17.96 21.23 0.09 145.95 
Reduced Till 12.89 17.29 0.06 123.07 
No-Till 5.06 8.03 0.01 57.82 

Contour Fall Plow 12.66 19.55 0.04 138.68 
Spring Plow 10.94 17.35 0.04 123.86 
Reduced Till 7.98 14.51 0.02 105.88 
No-Till 3.11 6.51 0 48.03 

Winter Straight Row Fall Plow 14.78 30.56 0.09 227.07 
Wheat 

Straight Row 
Spring Plow 12.21 23.97 0.07 177.78 
Reduced Till 9.37 17.34 0.05 127.17 
No-Till 4.87 10.09 0.01 73.84 

Contour Fall Plow 9.67 26.93 0.04 202.14 
Spring Plow 7.87 20.58 0.03 154.23 
Reduced Till 5.99 14.69 0.02 109.20 
No-Till 3.11 8.64 0.01 64.48 

Sorghum Straight Row Fall Plow 83.05 105.19 0.62 736.65 
Grain Spring Plow 79.04 100.37 0.60 703.47 

Reduced Till 87.49 103.68 0.64 718.28 
No-Till 67.15 109.38 0.35 807.90 

Contour Fall Plow 39.28 103.18 0.07 762.74 
Spring Plow 35.50 86.21 0.07 630.34 
Reduced Till 39.98 95.79 0.08 704.27 
No-Till 28.43 70.30 0.04 514.32 
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Table 8. Simulated long term average nitrate-N in runoff (mg/L) by cropping systems 

Cropping Conservation Tillage Standard 
System Practice Practice Mean Deviation Minimum Maximum 

Continuous Straight Row Fall Plow 7.37 3.44 2.00 14.00 
Com 

Straight Row 
Spring Plow 7.14 3.39 2.00 14.00 
Reduced Till 6.05 3.39 2.00 13.00 
No-Till 1.66 1.65 0 10.00 

Contour Fall Plow 5.49 3.25 2.00 12.00 
Spring Plow 5.28 3.03 2.00 12.00 
Reduced Till 4.60 3.04 0 13.00 
No-Till 1.21 1.37 0 9.00 

Corn- Straight Row Fall Plow 5.86 2.42 2.00 11.00 
Soybeans 

Straight Row 
Spring Plow 5.74 2.36 2.00 11.00 
Reduced Till 5.77 2.56 2.00 12.00 
No-Till 4.79 2.71 . 1.00 11.00 

Contour Fall Plow 3.98 2.29 2.00 10.00 
Spring Plow 3.88 2.23 2.00 10.00 
Reduced Till 4.04 2.38 0 11.00 
No-Till 3.47 2.34 1.00 9.00 

Oats Straight Row Fall Plow 3.42 1.72 1.00 7.00 Straight Row 
Spring Plow 3.20 1.64 1.00 7.00 
Reduced Till 3.14 1.59 1.00 7.00 
No-Till 3.12 2.00 0.95 7.00 

Contour Fall Plow 3.21 1.54 1.00 7.00 
Spring Plow 3.11 1.59 1.00 7.00 
Reduced Till 2.93 1.53 1.00 6.00 
No-Till 2.96 1.91 0.94 7.00 

Winter Straight Row Fall Plow 2.67 0.83 1.00 5.00 
Wheat 

Straight Row 
Spring Plow 2.63 0.79 1.00 4.00 
Reduced Till 2.54 0.78 1.00 4.00 
No-Till 3.09 1.17 1.00 5.00 

Contour Fall Plow 2.63 0.82 1.00 5.00 
Spring Plow 2.60 0.75 1.00 4.00 
Reduced Till 2.46 0.71 1.00 4.00 
No-Till 3.00 1.18 1.00 5.00 

Sorghum Straight Row Fall Plow 4.79 2.31 1.00 9.00 
Grain 

Straight Row 
Spring Plow 4.88 2.44 . 1.00 10.00 
Reduced Till 6.14 2.79 2.00 12.00 
No-Till 5.88 2.82 2.00 11.00 

Contour Fall Plow 3.21 2.03 1.00 9.00 
Spring Plow 3.25 2.07 1.00 9.00 
Reduced Till 4.02 2.55 1.00 11.00 
No-Till 3.89 2.48 1.00 10.00 
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Table 9. Simulated long term average leaching losses of nitrate-N by cropping systems 

Cropping 
System 

Conservation 
Practice 

Tillage 
Practice Mean 

Standard 
Deviation Minimum Maximum 

Continuous Straight Row Fall Plow 2.12 3.99 0.22 23.00 
Com 

Straight Row 
Spring Plow 2.05 3.68 0.20 20.00 
Reduced Till 2.87 3.70 0.28 19.00 
No-Till 2.36 2.67 0.46 16.00 

Contour Fall Plow 2.43 3.61 0.23 18.00 
Spring Plow 2.46 3.79 0.21 21.00 
Reduced Till 3.26 3.81 0.31 19.00 
No-Till 2.31 2.45 0.46 14.00 

Corn- Straight Row Fall Plow 1.73 2.28 0 13.00 
Soybeans 

Straight Row 
Spring Plow 1.84 2.13 0.34 11.00 
Reduced Till 2.19 2.37 0.42 15.00 
No-Till 9.43 10.72 0.60 42.00 

Contour Fall Plow 2.12 2.57 0.42 18.00 
Spring Plow 2.21 2.47 0.42 17.00 
Reduced Till 2.80 2.77 0.48 19.00 
No-Till 9.85 11.22 0.63 43.00 

Oats Straight Row Fall Plow 2.08 1.28 0.27 5.00 Straight Row 
Spring Plow 2.10 1.22 0.29 5.00 
Reduced Till 2.03 1.22 0.24 4.00 
No-Till 2.13 1.27 0.38 5.00 

Contour Fall Plow 2.16 1.29 0.29 5.00 
Spring Plow 2.21 1.27 0.30 5.00 
Reduced Till 2.10 1.22 0.26 4.00 
No-Till 2.18 1.27 0.39 5.00 

Winter Straight Row Fall Plow 2.26 2.05 0.17 13.00 
Wheat 

Straight Row 
Spring Plow 2.21 1.94 0.16 12.00 
Reduced Till 2.11 1.65 0.16 9.00 
No-Till 2.65 1.91 0.30 10.00 

Contour Fall Plow 2.27 1.96 0.18 12.00 
Spring Plow 2.24 1.88 0.18 11.00 
Reduced Till 2.13 1.68 0.18 9.00 
No-Till 2.78 1.93 0.32 10.00 

Sorghum Straight Row Fall Plow 1.86 3.33 0.09 16.00 
Grain Spring Plow 1.92 3.47 0.10 18.00 

Reduced Till 3.60 5.36 0.09 26.00 
No-Till 3.25 4.59 0.10 22.00 

Contour Fall Plow 1.80 2.64 0.10 14.00 
Spring Plow 1.84 2.70 0.11 14.00 
Reduced Till 3.44 4.09 0.11 19.00 
No-Till 3.27 3.89 0.12 19.00 
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Sate University experimental sites in Nashua watershed in northeast Iowa. Surface 

runoff measurements at this site reveal that the average concentration of nitrate-N in 

runoff was greatest under the moldboard plowing plots than the reduced and no-till 

plots. However, no-till plots had the greatest total nitrate-N and herbicide losses to 

groundwater (Kanwar et al. 1990). The concentrations in runoff decreased under 

contour system compared to straight row. For continuous corn, under straight row 

cropping system with fall plow, the mean simulated concentration of nitrate-N in runoff 

was 7.37 mg/L (ppm), which is close to the actual annual measurements. Average 

annual measurements (actual) of nitrate-N in runoff in the Roberts Creek watershed in 

northeast Iowa, with 49 percent row crop, mostly corn under fall plow, was 8 ppm 

(Seigley et al. 1993). 

Assuming nitrate-N concentration in runoff as a measure of concentration in the 

major river system we estimate a 5.3 ppm weighted long term average concentration 

of nitrate-N in surface water. The weights are the historical proportions of alternative 

tillage and cropping practices. Keeney and DeLuca (1993) report a eleven year (1980-

91) average flow of nitrate-N in Des Moines river system, based on actual annual 

measurements, as 5.6 ppm. Leaching losses of nitrate-N under conventional cropping 

practices ranged from 0 to 23 ppm, while for no-till it ranged from 0.12 to 43 ppm. 

Measurements of nitrate-N from several well samples in the region showed 

concentrations to range from 0 to 30 ppm (Vander Zee et al. 1990; Blanchard et al. 

1993). An USGS (1993) monitoring study of near-surface aquifers in Iowa, testing 40 

sampled wells, showed nitrate-N concentrations in the range of less than 0.05 to 12 

ppm. The simulated long term average leaching losses of nitrate-N is inside this range. 



www.manaraa.com

100 

In Table 10 we report the long term average runoff values of soluble P. The 

phosphorous emissions are generally low in all cropping systems, which confirms with 

the USGS findings (USGS 1993). The reason for low detection of phosphorous is that 

the two major crops grown in this region, corn and soybeans, require relatively less 

phosphorous application. In view of the low detection and limited concern from 

phosphorus pollution this indicator is not included in further analysis. 

Long term average values of atrazine in runoff and percolate are summarized in 

Table 11. As mentioned previously, atrazine is the most widely used herbicide in corn 

production in Iowa with nearly 40 percent of corn acres being treated with atrazine. 

Therefore, the economic ramifications of regulating atrazine use based on water quality 

standards will be severe requiring a careful evaluation of alternative policies. The 

concentration of atrazine in runoff from corn production decreases with conservation 

tillage but for sorghum the impact of tillage was marginal. The mean annual 

concentration of atrazine in runoff from corn ranged from 37 //g/L (ppb) with 

conventional tillage to 12 ppb with no-till (a reduction of 68 percent), while contouring 

reduced runoff losses by 33 to 55 percent. Fawcett et al. (1993) who reviewed over 

100 published studies to assess the effectiveness of various BMPs in reducing 

herbicide runoff conclude that conservation tillage systems have usually reduced 

runoff. Their summary of averaging natural rainfall study area data indicate that 

atrazine in runoff decreased by as much as 70 percent with no-till, and contouring 

reduced herbicide runoff by 60 percent. Reductions of this magnitude are the result of 

large reductions in erosion and increased infiltration. 
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Table 10. Simulated long term average soluble-P in runoff (mg/L) by cropping systems 

Cropping Conservation Tillage Standard 
System Practice Practice Mean Deviation Minimum Maximum 

Continuous Straight Row Fall Plow 1.09 0.47 0.53 2.00 
Com 

Straight Row 
Spring Plow 0.80 0.32 0.31 2.00 
Reduced Till 0.05 0.06 0 0.31 
No-Till 0.25 0.38 0 2.00 

Contour Fall Plow 0.87 0.28 0.44 2.00 
Spring Plow 0.68 0.36 0.23 2.00 
Reduced Till 0.04 0.05 0 0.25 
No-Till 0.21 0.36 0 2.00 

Com- Straight Row Fall Plow 0.87 0.22 0.48 2.00 
Soybeans 

Straight Row 
Spring Plow 0.72 0.21 0.35 1.00 
Reduced Till 0.29 0.15 0.11 0.86 
No-Till 1.02 0.46 0.39 2.00 

Contour Fall Plow 0.79 0.27 0.00 2.00 
Spring Plow 0.60 0.22 0.28 1.00 
Reduced Till 0.22 0.13 0.00 0.71 
No-Till 0.83 0.36 0.32 2.00 

Oats Straight Row Fall Plow 0.33 0.14 0.13 0.58 Straight Row 
Spring Plow 0.27 0.14 0.07 0.52 
Reduced Till 0.24 0.12 0.06 0.48 
No-Till 0.36 0.17 0.05 0.66 

Contour Fall Plow 0.31 0.13 0.13 0.56 
Spring Plow 0.25 0.13 0.07 0.51 
Reduced Till 0.23 0.11 0.06 0.45 
No-Till 0.35 0.17 0.05 0.66 

Winter Straight Row Fall Plow 0.57 0.13 0.35 1.00 
Wheat 

Straight Row 
Spring Plow 0.57 0.13 0.35 1.00 
Reduced Till 0.35 0.11 0.19 0.94 
No-Till 0.52 0.15 0.21 1.00 

Contour Fall Plow 0.55 0.12 0.35 1.00 
Spring Plow 0.55 0.12 0.34 1.00 
Reduced Till 0.34 0.11 0.18 0.94 
No-Till 0.51 0.16 0.21 1.00 

Sorghum Straight Row Fall Plow 0.55 0.20 0.25 1.00 
Grain Spring Plow 0.44 0.21 0.16 1.00 

Reduced Till 0.76 0.18 0.36 1.00 
No-Till 0.68 0.18 0.32 1.00 

Contour Fall Plow 0.49 0.18 0.23 1.00 
Spring Plow 0.36 0.18 0.11 0.94 
Reduced Till 0.70 0.19 0.34 1.00 
No-Till 0.62 0.18 0.29 1.00 
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Table 11. Simulated long term average atrazlne concentrations Wg/L) In runoff and 
percolate by cropping systems 

Cropping Conservation Tillage Standard 
System Practice Practice Mean Deviation Minimum Maximum 

Runoff 

Continuous Straight Row Fall Plow 36.58 16.66 0.35 69.00 
Com 

Straight Row 
Spring Plow 35.96 16.59 0.25 70.00 
Reduced Till 29.88 15.84 0.23 60.00 
No-Till 11.97 25.18 0 109.00 

Contour Fall Plow 24.76 15.05 0.07 57.00 
Spring Plow 23.99 15.69 0.13 64.00 
Reduced Till 19.37 14.04 0 53.00 
No-Till 5.43 15.96 0 94.00 

Sorglium Straight Row Fall Plow 27.10 13.26 0.31 50.00 
Grain 

Straight Row 
Spring Plow 27.37 13.45 0.33 53.00 
Reduced Till 28.61 13.41 0.40 52.00 
No-Till 27.68 13.36 0.40 52.00 

Contour Fall Plow 16.84 12.10 0.08 49.00 
Spring Plow 16.49 11.54 0.09 49.00 
Reduced Till 17.36 12.05 0.08 51.00 
No-Till 16.86 11.72 0.06 47.00 

Leaching 

Continuous Straight Row Fall Plow 1.67 6.84 0.00 44.00 
Com 

Straight Row 
Spring Plow 1.39 5.35 0.00 34.00 
Reduced Till 1.55 6.78 0.00 49.00 
No-Till 5.75 22.73 0.01 62.00 

Contour Fall Plow 2.75 12.70 0.00 93.00 
Spring Plow 2.80 15.57 0.00 117.00 
Rcduced Till 2.43 12.41 0.00 93.00 
No-Till 5.12 18.60 0.01 129.00 

Sorghum Straight Row Fall Plow 2.55 11.09 0.00 64.00 
Grain Spring Plow 2.33 10.39 0.00 67.00 

Reduccd Till 2.36 10.18 0.00 60.00 
No-Till 2.29 12.06 0.00 89.00 

Contour Fall Plow 2.18 10.05 0.00 72.00 
Spring Plow 2.56 13.14 0.00 97.00 
Reduced Till 2.52 12.69 0.00 93.00 
No-Till 2.45 13.12 0.00 98.00 
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The leaching losses of atrazine are in general several magnitude smaller than 

runoff losses. The concentration of atrazine in percolate increased under conservation 

tillage, ranging from 1.67 ppb with conventional tillage to 5.75 ppb with no-till. 

Contouring increased leaching losses of atrazine. Baker and Boddy (1990) examined 

the conservation tillage effects on nitrate-N and atrazine leaching in actual field sites 

with three different tillage systems: moldboard plow, chisel plow, and no-till. The 

results from this study show that conservation tillage, with the likely existence of more 

macropores at the soil surface, may influence chemical leaching depending on rainfall 

patterns. 

Regression metamodels 

Metamodeling is a novel econometric procedure that helps to abstract away 

unneeded detail of the complex process model by estimating reduced form response 

functions for the environmental indicators. These response functions will enable us to 

make statistically valid prediction of the dependent variable for complete set of soil, 

weather, and hydrologie parameters, within the study area, without the need for 

additional simulation runs. Furthermore, they allow economic and environmental model 

integration for an endogenous evaluation of environmental policies, which is not 

possible if one were to use the process model directly. Metamodels were fitted for the 

following environmental indicators: soil erosion, nitrate-N in runoff, nitrate-N in 

percolate, atrazine in runoff, and atrazine in percolate. 

Regression model development requires thorough examination of data so that 

the prior information contained in the data is fully utilized. Data diagnosis is necessary 
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to avoid model mis-specification and bias, which generally result if the classical 

assumptions of regression such as normality and constant variance of the stochastic 

disturbance term are violated. Therefore, it is a good practice to examine the 

distributions and residual scatter plots from the ordinary least squares (OLS) estimation 

of a simple linear regression model and decide weather the data requires any 

transformation. Experience with constructing metamodels for herbicide leaching and 

runoff for CEEPES analysis strongly suggest the need for data transformations. The 

details of transformation that was carried out after examining the distribution and OLS 

results for each indicator will be elaborated as we explain the individual metamodels. 

A simple linear model for soil erosion indicated that the error term is not 

randomly distributed suggesting heteroskedasticity (nonconstant variance). By fitting a 

weighted least squares model or estimating the regression model for transformed data 

homoskedasticity can be ensured.A simple linear regression model fitted to the 

cube-root transformation of the dependent variable gave a good fit as judged by 

adjusted R-square and root mean squared error (RMSE). The estimated metamodel is: 

A  A A A  A  A  A  

(soil lossjj)"® = o, slope + % K,-factor + % org.mat + pH + % rainfall 

+ % RCN + Oj c-prac + % residue, j= crop and i = 1 to 456 (1) 

Note, for notational parsimony the subscript i on the independent variable is dropped. 

Kf-factor is the soil erodibility factor, RCN is the runoff curve number which captures 

A variance stabilizing transformation for dependent variable Y can be found by 
using the generalized power transformation, Y*, with X < 1 for contracting 
transformation orX > 1 for expanding transformation. 
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the effect of hydrology and soil cover complexes in controlling runoff, and c-prac is a 

(0,1) dummy variable to capture the difference between the straight row and contour 

practices. The residue cover is included to capture the tillage effects. Table 12 shows 

the parameters of the above model. The model gave a good fit to the data as indicated 

by the signs on the estimated parameters, adjusted R^, and the coefficient of 

correlation between the dependent variable and its predicted value. 

The signs on the independent variables are consistent with theory. Soil erosion 

increases with slope and k,-factor. Higher organic matter content of the soil implies 

greater microbial activity reducing soil compaction and thereby increasing erosion. Soil 

pH has a negative sign implying reduced erosion of alkaline soils because of high 

compaction of soils with higher pH. Rainfall increases soil erosion so does the runoff 

curve number. Runoff curve number increases for soils with lesser infiltration capacity, 

which explains the positive sign on this coefficient. As explained previously, contour 

practice reduces soil erosion; and the residue cover, which captures the intensity of 

conservation tillage, also reduces soil erosion as indicated by the negative signs. 

Nitrate-N concentrations in runoff and percolate are influenced by several 

factors, including soil, weather, hydrology, and agronomic factors. Identifying a simple 

relationship explaining nitrate-N in runoff or percolate is very useful for modeling 

purposes. A simple linear regression model fitted to the untransformed data on nitrate-

N in runoff gave a good fit. The estimated metamodel for nitrate-N in runoff is: 

A A A A A A A 

(nitrate-N in runoffjj) = A + A slope + A clay + A org.mat + permeab + rainfall 
A A A 

+ fio RCN + fij c-prac + A residue, j = crop, i = 1 to 4562) 
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Table 12. Parameters of the estimated metamodels for soil erosion (in tons/ha) by cropping system 

independent Variables Cont. Corn- Sorghum Oats Winter Corn Legume 
Corn Soybeans Grain Wheat Silage Hay 

Intercept -5.789 -5.866 -7.431 -3.910 -5.184 -6.593 -6.117 

Soil Slope % 0.196 0.228 0.243 0.141 0.137 0.236 0.179 

K,-Factor* 3.858 5.228 5.866 1.374 2.894 5.848 2.278 

Organic Matter % 0.069 0.072 0.104 0.053 0.034 0.067 0.057 

Soil pH -0.245 -0.204 -0.224 -0.151 -0.047 -0.166 -0.226 

Rainfall (mm) 0.004 0.004 0.004 0.001 0.002 0.004 0.003 

Runoff Curve No.'' 0.061 0.055 0.062 0.066 0.043 0.056 0.079 

Conservation Dummy® -0.252 -0.531 -0.528 -0.249 -0.248 -0.538 -0.429 

Residue Cover (t/ha)"* -0.117 -0.060 -0.012 -0.082 -0.054 -0.064 -0.421 

Adjusted R^ 0.82 0.91 0.90 0.90 0.90 0.93 0.83 

RMSE 0.68 0.43 0.47 0.27 0.24 0.39 0.47 

P 0.87 0.94 0.93 0.94 0.93 0.94 0.73 

' This variable is a measure of soil erodibility potential. 
Runoff curve number is an index to capture the hydrologie soil-cover complexes. 

° This is a (0,1) variable, taking a value of 0 if straight row and 1 if contour. 
'' This variable captures the differences caused by alternative tillage practices. 

Note: All variables are significant at 5 percent level, RMSE is root mean squared error, N=456, and pis the 
coefficient of correlation between the actual (simulated) and predicted values of the dependent variable. 
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The explanation for the independent variables are as in equation (1). The estimated 

parameters of the above model are shown in Table 13. This model gave a good fit to 

the data as indicated by the signs on the estimated parameters, adjusted R^, and 

RMSE, and the coefficient of correlation between the dependent variable and its 

predicted value. The sign on the independent variables are consistent with theory. 

Factors that influenced runoff such as slope, clay content, organic matter, permeability, 

and RCN have positive signs implying increased nitrate-N runoff. Increased residue 

cover reduces runoff, therefore nitrate-N in runoff is negatively related to residue cover. 

A simple linear regression model fitted to the untransformed data on nitrate-N in 

percolate did not produce a good fit. The distribution of error term was skewed 

suggesting heteroskedasticity. We tried weighted least squares and transformation 

procedure, but the data did not give a good fit to any of these methods. A close 

examination of the data revealed that it has large number of observations that are zero 

or close to zero showing a skewed exponential distribution. It is quite common to have 

such a distribution for leaching values of nutrients and chemicals. Therefore, we fitted 

a simple nonlinear model ( Y=exp^' ) to the leaching data. The estimated metamodel 

for nitrate-N in percolate is: 

A A A A A A 

(nitrate-N in percolate,) = exp(ro + r, slope + FJ clay + r, org.mat + z* permeab 

+ Ts bulk density + rainfall + r, RCN -f- Tg c-prac 
A 

+ Tg residue), j= crop, 1 = 1 to 456. (3) 

The explanation for the independent variables are as in equation (1). The estimated 

parameters of the above model are shown in Table 14. The sign on the independent 
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Table 13. Parameters of the estimated metamodels for nitrate-N in runoff (in mg/L) by cropping system 

Independent Variables Cont. Corn- Sorghum 
Corn Soybeans Grain 

Oats Winter 
Wheat 

Corn 
Silage 

Legume 
Hay 

Intercept --1.213 -3.929 -7.509 4.670 2.044 -0.222 -10.655 

Soil Slope % 0.071 0.071 0.079 0.029 "0.001 0.060 "-0.038 

Clay % 0.081 0.053 0.092 0.064 "0.002 0.016 "0.007 

Organic Matter % 0.292 0.307 0.340 0.431 0.291 0.362 0.102 

Permeability (in/hr) 0.182 0.117 0.197 0.111 0.039 0.061 "0.050 

Rainfall (mm) -0.014 -0.012 -0.010 -0.010 -0.005 -0.020 -0.002 

Runoff Curve No." 0.222 0.223 0.214 0.053 0.054 0.308 0.204 

Conservation Dummy** 1.060 0.779 0.705 "-0.084 "0.050 1.336 "0.272 

Residue Cover (t/ha)® -0.246 -0.033 -0.002 -0.026 0.032 -0.084 -0.458 

Adjusted R^ 0.73 0.84 0.77 0.70 0.64 0.87 0.55 

RMSE 1.88 1.04 1.20 0.93 0.54 1.30 4.26 

P 0.86 0.92 0.88 0.84 0.80 0.93 0.73 

* Runoff curve number is an index to capture the hydrologie soil-cover complexes. 
This is a (0,1) variable, taking a value of 0 if straight row and 1 if contour. 

° This variable captures the differences caused by alternative tillage practices. 

Note: All variables, except the ones marked (ns), are significant at 5 percent level, RMSE is root mean squared 
error, N=456, and pis the coefficient of correlation between the actual (simulated) and predicted values of the 
dependent variable. 
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Table 14. Parameters of the estimated metamodels for leaching losses of nitrate-N (in mg/L) by cropping system 

Independent Variables Cont. Corn-
Corn Soybeans 

Sorghum 
Grain 

Oats Winter 
Wheat 

Corn 
Silage 

Legume 
Hay 

Intercept -18.112 7.786 -17.587 ""-0.422 -7.050 -7.195 -12.252 

Soil Slope % 0.236 --0.003 0.187 0.022 0.078 0.193 0.214 

Clay % 0.214 0.032 0.152 0.039 0.031 0.130 0.134 

Organic Matter % 0.510 0.205 0.353 0.189 0.169 0.278 0.512 

Permeability (in/hr) 0.238 0.068 0.149 -0.009 -0.004 0.139 0.227 

Bulk Density (g/cc) 4.194 1.661 3.578 0.700 0.863 -0.501 3.286 

Rainfall (mm) 0.006 -0.009 0.007 0.001 0.005 0.003 -0.828 

Runoff Curve No." -0.032 -0.078 "-0.004 -0.026 -0.000 -0.030 0.045 

Conservation Dummy** -0.286 -0.903 -0.210 --0.016 -0.009 -0.208 0.143 

Residue Cover (t/ha)° -0.116 0.179 0.014 -0.001 -0.008 0.025 -0.135 

Adjusted R^ 0.72 0.64 0.72 0.31 0.50 0.93 0.69 

RMSE 1.84 4.04 1.88 1.03 1.33 0.39 1.94 

P 0.87 0.82 0.86 0.57 0.73 0.94 0.84 

' Runoff curve number is an index to capture the hydrologie soil-cover complexes. 
This is a (0,1) variable, taking a value of 0 if straight row and 1 if contour. 

" This variable captures the differences caused by alternative tillage practices. 

Note: All variables, except the ones marked (ns), are significant at 5 percent level, RMSE is root mean squared 
error, N=456, and pis the coefficient of correlation between the actual (simulated) and predicted values of the 
dependent variable. 
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variables are consistent with theory. This nonlinear model gave a good fit as judged by 

the estimated parameter values and their signs, adjusted R-square, root mean squared 

error (RMSE), and the coefficient of correlation between the dependent variable and its 

predicted value. 

For atrazine in runoff, a simple linear model estimated using OLS indicated that 

the error term is not randomly distributed suggesting heteroskedasticity (nonconstant 

variance). A simple linear regression model fitted to square-root transformation of the 

dependent variable gave a good fit. The estimated metamodel for atrazine in runoff is 

A  A A A  A  A  

(atrazine in runoff,,)'^ = + a, slope + a^ org. mat + ag avi. water + a* rainfall 

+ ag RCN + ag c-prac + % residue, j= crop, i = 1 to 456. (4) 

The explanation for the independent variables are as in equation (1). The estimated 

parameters of the above model are shown in Table 15. This model gave a good fit to 

the data as indicated by the signs on the estimated parameters, adjusted R^, and 

RMSE. The sign on the independent variables are consistent with theory. The RCN 

has a positive sign suggesting higher concentrations in runoff for soils with less 

infiltration capacity. The negative sign on residue implies less concentration in runoff 

as the cover factor is increased, therefore no-till should result in less emissions into 

runoff as reported in field studies. 

A simple linear regression model fitted to the untransformed data on atrazine in 

percolate did not produce a good fit. The distribution of error term was skewed 

suggesting heteroskedasticity. We tried weighted least squares and transformation 

procedure, but the data did not gave a good fit to any of these methods. A close 
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Table 15. Estimated metamodels for atrazine runoff and leaching losses (in ijqIL) 

Independent Variables 

Intercept 

Soil Slope % 

Clay % 

Organic Matter % 

Permeability (in/hr) 

Available Water (in/in) 

Bulk Density (g/cc) 

Rainfall (mm) 

Runoff Curve No." 

Conservn. Dummy"" 

Residue Cover (t/ha)° 

Adjusted R^ 

RMSE 

P 

Cont. Sorghum 
Corn Grain 

Atrazine in Runoff 

-5.621 -3.170 

"•-0.000 -0.035 

0.434 0.506 

5.299 5.573 

-0.004 -0.005 

0.172 0.143 

0.762 0.377 

-0.180 -0.017 

0.60 0.76 

1.60 0.80 

0.72 0.87 

Cont. Sorghum 
Corn Grain 

Leaching Losses of Atrazine 

-5.719 -30.490 

0.392 0.810 

0.217 0.542 

-0.078 1.096 

0.413 1.080 

-5.001 -0.873 

0.003 0.003 

-0.027 -0.057 

-0.216 -0.767 

0.034 0.004 

0.88 0.95 

4.87 2.55 

0.94 0.97 

* Runoff curve number is an index to capture the hydrologie soil-cover 
complexes. 
** This is a (0,1) variable, taking a value of 0 if straight row and 1 if contour. 
" This variable captures the differences caused by alternative tillage practices. 

Note: All variables, except the ones marked (ns), are significant at 5 percent 
level, RMSE is root mean squared error, N = 456, and pis the coefficient of 
correlation between the actual (simulated) and predicted values of the 
dependent variable. 
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examination of the data revealed that it has large number of observations that are zero 

or close to zero showing a skewed exponential distribution. It is quite common to have 

such a distribution for leaching values of herbicides (Bouzaher et al. 1993). Therefore, 

we fitted a simple nonlinear model ( Yzexp^'^ ) to the leaching data. The estimated 

metamodel for atrazine in percolate is: 

A A A 

(atrazine in percolate,,) = exp(bo + b, slope + 
A 

+ bb bulk density 
A 

+ b^ residue), j = 

A A A 

bj clay + ba org.mat + b* permeab 
A A A 

+ be rainfall + b, RCN + bg c-prac 

crop, i = 1 to 456. (5) 

The explanation for the independent variables are as in equation (1). The estimated 

parameters of the above model are shown in Table 15. The sign on the independent 

variables are consistent with theory. This nonlinear model gave a good fit as judged by 

the estimated parameter values and their signs, adjusted R-square, root mean squared 

error (RMSE), and the coefficient of correlation. 

Prediction, spatial distribution, and aggregation 

Using the estimated metamodels rate of soil erosion and nutrient and chemical 

runoff/leaching rates were predicted (extrapolated) for every soil in the watershed. 

Thus the estimates account for site-specific variations in soil properties, weather, and 

hydrologie parameters. These site-specific estimates are summarized as cumulative 

frequency distributions for each of the environmental indicators. The distribution gives 

a measure of spatial probability that a given soil under a given technology will exceed 

the appropriate reference value for that indicator. This measure, "probability that a soil 
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is at-risk," is more intuitively interpreted as a measure of the spatial distribution of risk, 

and its usefulness is to target vulnerable soils and areas. 

Figure 8 shows the cumulative frequency distribution of soil erosion for 

continuous corn and corn-soybean rotation under straight row and contour system. 

The distributions are shown separately by tillage. Suppose we pick a reference value 

of 50 tons per hectare (20 tons/acre) or less soil erosion, then the distributions in 

Figure 8.1. tells that only 40 percent of the soils grown with straight row continuous 

corn will meet this criteria under conventional till fall-plow cropping system. The 

percent of soils that will meet this criteria increases as we move towards conservation 

tillage. That is, the farther the curve from the origin and closer to upper left-hand 

corner the smaller is the proportion of erosive soils. Comparing between straight row 

and contouring, the later reduces soil erosion and the proportion of at-risk soils 

considerably. Likewise between continuous corn and corn-soybean rotation, the former 

is less erosive cropping system reiterating the field study results. Note, the differences 

in erosion impacts of tillage is narrowed as we switch from straight row cropping to 

contouring suggesting that the gains, in terms of preserving top soil, to conservation 

tillage under straight row cropping system is significant. 

Figures 9 and 10 shows the cumulative frequency distributions for nitrate-N in 

runoff and percolate. The proportion of at-risk soils for nitrates in runoff decreases 

considerably as we move from conventional till fall-plow to no-till. In a corn-soybean 

rotation the tillage impacts are not profound. This could be explained by the smaller 

difference in tillage impacts on soil erosion (Figure 8). Contrary to this, the tillage 

impacts are more profound in the case of nitrate-N leaching from corn-soybean rotation 
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I .  Continuous Corn, Slialghl Row 2, Continuous Coin, Contour System 
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Figure 8. The cumulative distribution of soil erosion for continuous corn 
and corn-soybean rotations under straight row and contour 
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I .  Continuous Corn, Straight Row 2. Continuous Corn, Contour System 

1 2 3 4 5 6 7 8 9  1 0  I I  

Nitrate N Runolf (ppm) 

I 2 3 4 3 G 7 a 9 10 II 

Nitrate N Runolf (ppnn) 

a:conv t i l l ,  lal l  plow b:conv t i l l ,  spring plow cireduced t i l l  d:no-t i l l  

3. Corn-Soybean, Straight Row 

100 

C u 
m 

F 
r 
e 
q 

% 

0 1 2 3 4 5 6 7 8 9  m  I I  

Nitrate N RunofI (ppm) 

4. Corn-Soybean, Contour System 

100 

C 
u 
nn 

F 
r 
e 
q 

% 

0 1 2 3 4 5 6 7 8 9  1 0  I I  

Nitrate N Runolt |ppm) 

Figure 9. The cumulative distribution of nitrate-N in runoff for continuous 
corn and corn-soybean rotations under straight row and contour 
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I .  Conllnuous Corn, Straight Row 2. Continuous Corn, Contour System 
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Figure 10. The cumulative distribution of nitrate-N in percolate for continuous 
corn and corn-soybean rotations under straight row and contour 
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than continuous corn, see Figure 10. This is an interesting finding because it asserts 

that conservation tillage for continuous corn is environmentally sound agricultural 

practice that can simultaneously protect both soil and water resource. The higher 

leaching of nitrates under corn-soybean rotation could be explained partly by the 

nitrogen fixing capacity of soybean. Therefore, by developing a BMP that gives proper 

credit for crop fixed nitrogen and reduces fertilizer supplied N, the potential leaching 

problem could be controlled. 

Figure 11 shows the cumulative distribution of atrazine in runoff and percolate 

for continuous corn. The probability of at-risk soils in terms of atrazine runoff is 

greater for conventional tillage, while the probability of at-risk soils in terms of atrazine 

leaching is greater for conservation tillage. The difference between tillage systems is 

significant as far as runoff of atrazine is concerned than the leaching losses. Similar 

trends can be seen under contour system, but the probabilities of at-risk soils are 

generally smaller compared to straight row. 

Policy Scenario Results 

The integrated economic-environmental model allows evaluation of alternative 

environmental resource protection policies and its impact on economic efficiency and 

environmental quality and sustainability. By integrating the economic decision model 

with the physical process model outputs, through metamodeling and spatial 

aggregation, such policy evaluations can be performed. This is the most advanced 

modeling technique to date that accounts for spatial heterogeneity of the underlying 

processes in a scientific way. Due to the uncertainty introduced by stochastic weather 

events exercise caution in using the absolute numbers. The merit of this analysis. 



www.manaraa.com

118 

1. Continuous Corn, Slialghl Row 2.  Continuous Corn, Contour System 
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Figure 11. The cumulative distribution of atrazine in runoff and percolate for 
continuous corn under straight row and contour 
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however, is its results indicating the direction of changes, tradeoffs, and relative shifts 

of various economic and environmental indicators in response to alternative policy 

scenarios. Furthermore, it allows evaluation of alternative scenarios simultaneously as 

opposed to the traditional piecemeal policy evaluation. This section briefly discusses 

results from alternative policy scenarios including the potential tradeoffs and gains. 

Piecemeal policy scenarios 

Preserving top soil from erosion and protecting ground and surface waters from 

chemical pollution has been receiving tremendous attention as is evident from various 

voluntary and regulatory policies. To understand the tradeoffs between soil 

conservation and water quality policies three alternative scenarios were evaluated. 

Three scenarios representing soil quality, surface water quality, and groundwater 

quality protection policies, respectively, were evaluated. The scenarios are, SI — a 

50% reduction in soil erosion with minimum deviation of profits from the level achieved 

in the baseline scenario; S2— a 25% reduction in nitrate-N concentration and 50% 

reduction in atrazine concentration in surface runoff; and S3— a 50% reduction in 

leaching losses of nitrate-N and atrazine. Scenarios S2 and S3 also required minimum 

deviation of profit from baseline. It is assumed that the leaching losses and surface 

runoff are indicators of potential ground and surface water contamination. 

The baseline scenario is calibrated to the historical crop acreage, production, 

resource use, and the levels of soil conserving technologies observed in the study area. 

According to this baseline, corn and soybeans are produced in 13 and 8 million acres 

out of a total of 25 million acres. Conventional, reduced, and no-till systems are 

adopted in 63, 34, and 3 percent. The net returns to marketing and government 
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program payments determined by the baseline model is $2.58 billion for this 

watershed. The baseline is modeled to account for CRP and CCP participation. To 

know the influence of CRP and CCP on the baseline scenario, and consequently on the 

three soil and water quality scenarios, two additional scenarios, namely baseline 

without CRP and baseline without CCP were evaluated. It is important to note that 

these two scenarios, analyze the impacts of allowing commercial crop production and 

waiver of conservation plan on CRP and CCP lands. This is counter to the traditional 

approach, but it is justifiable on the basis of recent debates. Table 16 shows the 

baseline results without CRP and CCP provisions. In general the economic impacts are 

smaller and the resource use adjustments are minimal. The impacts on environmental 

indicators are mixed. Soil erosion and runoff increases while leaching losses decrease. 

The policy scenario SI aims at reducing soil loss by 50% or equivalently to 

achieve a 2T (twice the soil loss tolerance limit) standard. T is basically the natural 

rate of growth of soil. This policy will not only sustain soil productivity, but also 

minimize off-site sediment transport problem. The results of SI are summarized in 

Tables 17 through 19. Table 17 shows the shifts in economic and environmental 

indicators including the input use changes, relative to baseline. Scenario SI reduces 

net returns by 21 % in trying to achieve a 2T standard or $22 per acre. The estimated 

loss in revenue of $1.88 per ton of soil saved is comparable to Barbarika and Dicks 

(1988) estimate of $1.90 for the Corn Belt and Setia and Osborn's (1989) estimate of 

$2.38 per ton. By limiting soil erosion, nutrient and chemical runoff were reduced by 

about 20%, but leaching losses increased by 40% for nitrate-N and 18% for atrazine. 

Herbicide use increases by 80%, while there was marginal reduction in N and P use. 
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Table 16. CRP and CCP: Shifts in economic-environmental indicators and input use 

Indicator/Input Baseline Absolute change 

no CRP no-CCP 

Net Returns, $/ac 102.40 -4.80 -1.65 

Soil loss, tons/ac 23.40 +0.70 -1.51 

Nitrate-N runoff, mg/L 5.15 +0.02 +0.15 

Nitrate-N leaching, mg/L 1.67 -0.12 -0.21 

Atrazine runoff, //g/L 25.91 +0.01 -2.54 

Atrazine leaching, //g/L 0.60 -0.06 -0.05 

Nitrogen fert., Ibs/ac 76.46 unchg unchg 

Phosphorous, Ibs/ac 47.28 unchg unchg 

Herbicides, lbs a.i./ac 0.90 unchg unchg 

Note: CRP is the Conservation Reserve program and CCP is the Conservation 
Compliance Program. 
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Table 17. Scenario—S1*; Shifts in economic-environmental indicators and input use 

Indicator/Input Baseline SI Abs.change % change 

Net Returns, $/ac 102.40 80.45 -21.95 -21.4 

Soil loss, tons/ac 23.40 11.77 -11.63 -49.7 

Nitrate-N runoff, mg/L 5.15 4.15 -1.00 -19.3 

Nitrate-N leaching, mg/L 1.67 2.49 +0.82 + 49.1 

Atrazine runoff, //g/L 25.91 21.64 -4.27 -16.5 

Atrazine leaching, //g/L 0.60 0.71 -1-0.11 + 18.3 

Nitrogen fert., Ibs/ac 76.46 70.44 -6.02 -7.9 

Phosphorous, Ibs/ac 47.28 43.15 -4.13 -8.7 

Herbicides, lbs a.i./ac 0.90 1.65 +0.75 83.3 

* Soil quality (2T soil erosion reduction) scenario. 

Table 18. Scenario—SI: Crop production acreage and tillage shifts from baseline 

Crop/Tillage % share to total Baseline acreage % change 

Baseline SI 
(mil ac) from baseline 

Corn grain 50.9 41.7 12.83 -18.0 

Corn silage 2.1 1.4 0.53 -33.8 

Legume hay 10.1 15.2 2.55 + 50.2 

Nonlegume hay 1.2 1.2 0.31 

o
 

9
 

Oats 2.9 9.9 0.74 + 237.5 

Soybeans 32.2 21.6 8.12 -32.9 

Winter wheat 0.6 9.0 0.14 + 1541.5 

Tillage 

Conventional till 62.8 50.0 15.82 -25.4 

Reduced till 34.3 41.2 8.65 + 16.7 

No-till 2.9 8.8 0.74 + 66.7 
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Table 19. Scenario—SI: Crop rotation adjustments 

Crop Rotation Baseline SI Crop Rotation 

mil ac % share mil ac % share 

CRN 2.14 8.5 0.05 0.2 

CRN-CRN-SOY 7.00 27.7 8.21 32.6 

CRN-CRN-SOY-OTS-NLH 1.53 6.1 

CRN-CRN-SOY-WWT 0.50 2.0 

CRN-CRN-CRN-OTS-HLH-HLH 0.75 3.0 

CRN-OTS-WWT 0.04 0.1 6.80 27.0 

CRN-SOY 10.29 40.8 4.71 18.7 

CSL-SOY 0.71 2.8 

CSL-CSL-OTS-HLH 0.66 2.6 

CSL-SOY-HLH-HLH-HLH-HLH 1.22 4.8 

OTS-HLH-HLH-HLH 1.02 4.1 

OTS-NLH-NLH-NLH 0.41 , 1.6 

HLH-HLH-HLH-HLH 0.80 3.2 3.58 14.2 

Note: CRN-corn, CSL-corn silage, HLH-legume hay, NLH-nonlegume hay, 
OTS-oats, SOY-soybeans, and WWT-winter wheat. 
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The increased herbicide application is explained by the increase in conservation 

tillage acreage (reduced and no-till), see Table 18. The crop acreage distribution under 

the baseline and SI scenarios are shown in Table 18. The reductions in corn grain, 

corn silage, and soybean acreage by 18%, 34%, and 33%, respectively, were offset 

by increased acreage of small grains (oats and winter wheat) and legume hay. The 

decrease in corn acreage explains the decline in fertilizer use. Table 19 shows the 

distribution of various crop rotations. The soil loss reduction scenarià reduces corn-

soybean rotation from 10.3 million acres to 4.7 million acres and increases legume hay 

rotation from 0.8 million acres to 3.6 million acres, and takes most of the acreage out 

of continuous-corn rotation. Bringing in more rotational cropping systems than 

continuous cropping systems is a better sustainable agricultural practice as it reduces 

pesticide use and also commercial fertilizer use. 

The policy scenario S2 aims at 25% reduction in nitrates and 50% reduction in 

atrazine in runoff. Nitrates is more of a problem for groundwater than surface waters, 

therefore the reference (goal) value is set at only 25% reduction. The results of S2 are 

summarized in Tables 20 through 22. Table 20 shows the shifts in economic and 

environmental indicators including the input use changes, relative to baseline. Scenario 

S2 reduces net returns by 8% in trying to achieve the stipulated runoff standard. 

Reducing runoff reduces soil erosion from 23 tons/acre in baseline to 15 tons/acre. 

Limiting runoff losses of nutrients and chemical, however, increases the leaching losses 

of nitrates by 35% and atrazine by 15%. The increase in leaching is, however, smaller 

compared to that caused by the soil reduction scenario (SI). The N and P fertilizer use 

decreases by 17% and 9%, respectively, while herbicide use remain unchanged. 
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Table 20. Scenario—82": Shifts in economic-environmental indicators and input use 

Indicator/Input Baseline S2 Abs.change % change 

Net Returns, $/ac 102.40 93.74 -8.66 do
 

Soil loss, tons/ac 23.40 14.87 -8.53 -36.4 

Nitrate-N runoff, mg/L 5.15 3.99 -1.16 -22.6 

Nitrate-N leaching, mg/L 1.67 2.24 4-0.58 4-34.5 

Atrazine runoff, //g/L 25.91 16.82 -9.09 -35.1 

Atrazine leaching, //g/L 0.60 0.69 4-0.09 -f 15.0 

Nitrogen fert., Ibs/ac 76.46 63.78 -12.68 -16.6 

Phosphorous, Ibs/ac 47.28 43.00 -4.28 -9.1 

Herbicides, lbs a.i./ac 0.90 0.91 4-0.01 4-1.1 

* Surface water quality (nitrates and atrazine runoff reduction) scenario. 

Fable 21. Scenario—S2: Crop production acreage and tillage shifts from baseline 

Crop/Tillage % share to total Baseline acreage % change 

Baseline S2 
(mil ac) from baseline 

Corn grain 50.9 42.06 12.83 -17.4 

Corn silage 2.1 1.4 0.53 -35.5 

Legume hay 10.1 30.4 2.55 4-200.0 

Nonlegume hay 1.2 1.2 0.31 -0.02 

Oats 2.9 2.9 0.74 4-0.11 

Soybeans 32.2 21.5 8.12 -33.3 

Winter wheat 0.6 0.5 0.14 -0.00 

Tillage 

Conventional till 62.8 51.8 15.82 -21.2 

Reduced till 34.3 41.2 8.65 4-16.6 

No-till 2.9 7.0 0.74 4-58.3 
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Table 22. Scenario—S2; Crop rotation adjustments 

Crop Rotation Baseline S2 Crop Rotation 

mil ac % share mil ac % share 

CRN 2.14 8.5 1.05 4.2 

CRN-CRN-SOY 7.00 27.7 11.10 44.0 

CRN-CRN-SOY-OTS-NLH 1.53 6.1 1.53 6.1 

CRN-CRN-SOY-WWT 0.50 2.0 0.55 2.2 

CRN-OTS-WWT 0.04 0.1 

CRN-SOY 10.29 40.8 2.53 10.0 

CSL-CSL-OTS-HLH 0.66 2.6 0.69 2.7 

CSL-SOY-HLH-HLH-HLH-HLH 1.22 4.8 

OTS-HLH-HLH-HLH 1.04 4.1 1.05 4.2 

HLH-HLH-HLH-HLH 0.80 3.2 3.58 26.6 

Note: CRN-corn, CSL-corn silage, HLH-legume hay, NLH-nonlegume hay, 
OTS-oats, SOY-soybeans, and WWT-winter wheat. 
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The crop acreage distribution under the baseline and S2 scenarios are shown in 

Table 21. The reductions in corn grain, corn silage, and soybean acreage by 17%, 

36%, and 33%, respectively, were offset by increased acreage of oats (11 %) and 

legume hay (200%). The decrease in corn acreage explains the reduction in average 

fertilizer use. Scenario S2 reduces conventional tillage by 21 % and increases reduced 

and no-till by 17% and 58%, respectively. Table 22 shows the distribution of various 

crop rotations. The runoff scenario reduces continuous-corn rotation from 2.1 million 

acres to 1.1 million acres and increases legume hay rotation from 0.8 million acres to 

3.6 million acres. 

The policy scenario S3 aims at 50% reduction in leaching losses of nitrate-N 

and atrazine. The results of S3 are summarized in Tables 23 through 25. Table 23 

shows the shifts in economic and environmental indicators including the input use 

changes, relative to baseline. Scenario S3 reduces net returns by about 10% in trying 

to achieve the stipulated percolation standard. Groundwater quality scenario S3 

increases soil erosion by more than 8 tons per acre per year, which is a 35% increase 

from baseline. Limiting leaching losses of nutrients and atrazine increases runoff of 

nitrate-N by 9% and that of atrazine by 37%. N and P fertilizer use decreased by 17% 

and 7%, respectively, while average herbicide use doubled. 

The crop acreage distribution under the baseline and S3 scenarios are shown in 

Table 24. The reductions in corn grain and corn silage acreage by 16% and 31%, 

respectively, were offset by increases in soybeans (15%), nonlegume hay (82%), and 

legume hay (32%). The decrease in corn acreage explains the reduction in average 

fertilizer use. Scenario S3 increases the proportion of conventional tillage from 63% in 
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Table 23. Scenario—S3*: Shifts in economic-environmental indicators and input use 

Indicator/Input Baseline S3 Abs.change % change 

Net Returns, $/ac 102.40 92.70 -9.70 -9.5 

Soil loss, tons/ac 23.40 31.60 + 8.20 + 35.1 

Nitrate-N runoff, mg/L 5.15 5.63 + 0.47 + 9.2 

Nitrate-N leaching, mg/L 1.67 0.83 -0.84 -50.0 

Atrazine runoff, //g/L 25.91 35.58 + 9.67 + 37.3 

Atrazine leaching, //g/L 0.60 0.33 -0.02 -50.0 

Nitrogen fert., Ibs/ac 76.46 63.27 -13.19 -17.3 

Phosphorous, Ibs/ac 47.28 44.15 -3.13 -6.6 

Herbicides, lbs a.i./ac 0.90 1.87 +0.97 + 107.8 

* Groundwater quality (nitrates and atrazine leaching reduction) scenario. 

Table 24. Scenario—S3: Crop production acreage and tillage shifts from baseline 

Crop/Tillage % share to total Baseline acreage % change 

Baseline S3 
(mil ac) from baseline 

Corn grain 50.9 42.6 12.83 -16.3 

Corn silage 2.1 1.5 0.53 -31.0 

Legume hay 10.1 13.3 2.55 + 31.8 

Nonlegume hay 1.2 2.2 0.31 + 81.5 

Oats 2.9 2.9 0.74 -0.1 

Soybeans 32.2 36.9 8.12 + 14.8 

Winter wheat 0.6 0.5 0.14 + 0.1 

Tillage 

Conventional till 62.8 96.6 15.82 + 35.0 

Reduced till 34.3 3.4 8.65 -917.9 

No-till 2.9 0.0 0.74 
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Table 25. Scenario—S3: Crop rotation adjustments 

Crop Rotation Baseline S3 Crop Rotation 

mil ac % share mil ac % share 

CRN 2.14 8.5 

CRN-CRN-SOY 7.00 27.7 2.20 8.7 

CRN-CRN-SOY-OTS-NLH 1.53 6.1 2.77 11.0 

CRN-CRN-SOY-WWT 0.50 2.0 0.55 2.2 

CRN-OTS-WWT 0.04 0.1 

CRN-SOY 10.29 40.8 15.78 62.6 

CSL-CSL-OTS-HLH 0.66 2.6 0.74 2.9 

CSL-SOY-HLH-HLH-HLH-HLH 1.22 4.8 

OTS-HLH-HLH-HLH 1.02 4.1 

HLH-HLH-HLH-HLH 0.80 3.2 3.17 12.6 

Note: CRN-corn, CSL-corn silage, HLH-legume hay, NLH-nonlegume hay, 
OTS-oats, SOY-soybeans, and WWT-winter wheat. 
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baseline to 97%, while the proportion of reduced tillage drops significantly from 345 to 

3% and no-till acreage is totally shifted into conventional tillage. Table 25 shows the 

distribution of various crop rotations. The percolation reduction scenario eliminates 

continuous-corn rotation and increases legume hay rotation from 0.8 million acres to 

3.2 million acres. 

The results from theses three scenarios clearly suggest that there Is tradeoff 

between the economic and the environmental objectives. There is also tradeoff 

between the environmental objectives, that is, soil resource and groundwater quality 

protection objectives are in conflict with one another. If the piecemeal policy emphasis 

is on soil conservation then one can not avoid impairing groundwater quality. 

Therefore, the SI and S3 scenarios must be jointly evaluated by imposing soil and 

groundwater quality standards simultaneously. On the other hand scenarios SI and S2 

are complementary to each other. Note that the soil erosion scenario, which is 

restrictive than the runoff scenario, also achieves the desired runoff water quality 

standards. Therefore, in the ensuing multiple objective evaluation for multimedia (soil 

and water) quality we considered soil erosion and groundwater quality protection 

objectives only. Reducing the elements of the multiple objective vector will greatly 

speed up the solution procedure and also reduces the number of alternative nonlnferior 

solutions to be evaluated. 

Multi-objective scenario 

An additively linear sum of deviation of profits, soil loss, and leaching losses of 

nitrates and atrazine from the respective targets was minimized. The target for profit 
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was set at the baseline level. The target for soil erosion was set at 2T level and the 

groundwater quality target is the baseline leaching losses of nitrates and atrazine. 

Since the objectives are noncommensurable the normalized percentage deviations of 

the objectives from their targets are minimized. A normalized weight vector was also 

used to generate the tradeoffs. 

The multiobjective scenario (S4) is a comprehensive economic and 

environmental policy scenario, therefore it requires compromising between the 

objectives. The results of this scenario are summarized in Tables 26 through 28. In 

Table 26 the changes in economic and environmental indicators including input use 

changes, relative to the baseline, are shown. Scenario S4 reduces net returns by about 

43% in trying to achieve the stipulated soil loss goal and simultaneously protect 

groundwater from further impairment. Soil erosion decreases by 48% bringing the 

annual soil loss level within 2T standard. The leaching losses of nitrates and atrazine 

were below the baseline levels of 1.67 ppm and 0.6 ppb, respectively. The runoff 

losses of nitrates and atrazine were reduced to 3.37 ppm and 21.96 ppb from the 

baseline levels of 5.15 ppm and 25.91 ppb, respectively. Note, the piecemeal soil 

erosion scenario SI increased leaching losses of nitrates by about 50% and atrazine by 

18%, while the piecemeal groundwater quality scenario S3 increased soil erosion by 

more than 8 tons per acre per year, which is a 35% increase from baseline. 

In this multiobjective scenario, the N and P fertilizer use decreases by 19% and 

10%, respectively, while average herbicide use doubled. Since this scenario imposes 

standards for atrazine it is likely that the concentrations of other herbicides may 

increase in ground and surface waters. A future evaluation should consider including 
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Table 26. Scenario—84": Shifts in economic-environmental indicators and input use 

Indicator/Input Baseline S4 Abs.change % change 

Net Returns, $/ac 102.40 57.50 -44.90 -43.4 

Soil loss, tons/ac 23.40 12.30 -11.10 -48.0 

Nitrate-N runoff, mg/L 5.15 3.37 -1.77 -34.5 

Nitrate-N leaching, mg/L 1.67 1.58 -0.10 -5.5 

Atrazine runoff, /wg/L 25.91 21.97 -3.94 -15.2 

Atrazine leaching, //g/L 0.60 0.56 -0.04 -6.6 

Nitrogen fert., Ibs/ac 76.46 62.03 -14.42 -18.9 

Phosphorous, Ibs/ac 47.28 42.34 -4.93 -10.4 

Herbicides, lbs a.i./ac 0.90 1.80 + 0.90 + 100.0 

* Soil erosion reduction to 2T and groundwater quality protection scenario. 

Table 27. Scenario—S4: Crop production acreage and tillage shifts from baseline 

Crop/Tillage % share to total Baseline acreage % change 

Baseline S4 
(mil ac) from baseline 

Corn grain 50.9 42.0 12.83 -17.6 

Corn silage 2.1 1.5 0.53 -31.0 

Legume hay 10.1 30.3 2.55 + 200.0 

Nonlegume hay 1.2 1.2 0.31 -0.0 

Oats 2.9 2.9 0.74 -0.1 

Soybeans 32.2 21.5 8.12 -33.1 

Winter wheat 0.6 0.5 0.14 +0.0 

Tillage 

Conventional till 62.8 45.4 15.82 -38.0 

Reduced till 34.3 42.9 8.65 + 20.4 

No-till 2.9 11.7 0.74 + 74.5 
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Table 28. Scenario—S4; Crop rotation adjustments 

Crop Rotation Baseline S4 Crop Rotation 

mil ac % share mil ac % share 

CRN 2.14 8.5 4.59 18.2 

CRN-CRN-SOY 7.00 27.7 

CRN-CRN-SOY-OTS-HLH 2.08 8.2 

CRN-CRN-SOY-OTS-NLH 1.53 6.1 

CRN-CRN-SOY-WWT 0.50 2.0 

CRN-OTS-WWT 0.04 0.1 0.41 1.6 

CRN-SOY 10.29 40.8 10.03 39.8 

CSL-CSL-OTS-HLH 0.66 2.6 7.39 2.9 

CSL-SOY-HLH-HLH-HLH-HLH 1.22 4.8 

OTS-HLH-HLH-HLH 1.02 4.1 

HLH-HLH-HLH-HLH 0.80 3.2 7.05 28.0 

NLH-NLH-NLH-NLH 0.31 1.2 

Note: CRN-corn, CSL-corn silage, HLH-legume hay, NLH-nonlegume hay, 
OTS-oats, SOY-soybeans, and WWT-wlnter wheat. 
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the water quality standards of other herbicides. The crop acreage distribution under 

the baseline and S4 scenarios are shown in Table 27. The reductions in corn and 

soybean acreage by 18% and 33%, respectively, were offset by increases in legume 

hay production. The decrease in corn acreage explains the reduction in average 

fertilizer use. The increase in herbicide use is explained by the increase in conservation 

tillage. The proportion of reduced and no-till acreage to total acreage increases 34% 

and 3% in baseline to 43% and 12%, respectively. Table 28 shows the distribution of 

crop rotation. The share of continuous corn increases from 9% in baseline to 18%, 

while corn-soybean rotation remained unchanged. The share of Legume hay rotation 

and corn-soybean-oats-legume hay rotation increased significantly, also some 

nonlegume hay rotations were introduced. 

By varying the elements of the normalized weight vector we traced the tradeoff 

between returns, soil loss, groundwater quality, and surface water quality. The results 

are summarized in Figure 12. The tradeoff between net returns and soil loss (relative 

to soil loss tolerance) is shown in quadrant I. The level of groundwater quality, as 

measured by the leaching losses of nitrate-N and atrazine, relative to different levels of 

soil loss tolerance is shown in quadrant IV. The tradeoff between groundwater and 

surface water quality (measured as runoff of nitrate-N) is shown in quadrant III. The 

level of surface water quality as influenced by soil loss reduction is shown in quadrant 

II, which shows the tradeoff between the economic goal and surface water quality. 

Comparing quadrants I and IV, it is clear that to achieve higher groundwater 

quality (that is, lower concentrations of nitrate-N in groundwater) one must be willing 

to accept increased soil loss. The alternative best management practices, however. 
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will have a role to play in minimizing this tradeoff. Likewise, there is a tradeoff 

between surface and groundwater quality. Given this information on tradeoffs and the 

range of viable BMPs, it is up to the decision maker to find the best compromise 

solution. 
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Figure 12. The economic-environmental tradeoffs 
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CHAPTER VI. SUMMARY AND CONCLUSIONS 

The task of integrated modeling of economic and environmental policies, to 

address agricultural nonpoint source pollution, is confounded by a novel method that 

integrates multidisciplinary models in a consistent multiple objective framework. The 

need for integrated assessment in a multiobjective framework is motivated by the 

physical process interactions. In the past the agricultural nonpoint source pollution 

problem is mostly addressed on a piecemeal basis as a result, even after 20 years of 

research and regulation, the problem is still at large. A primary reason for this is the 

inherent tradeoff between the economic and environmental objectives and a lack of 

comprehensive policy. 

There are several approaches to modeling the economic and environmental 

integration. In practice, however, many researchers have adopted the simple and 

piecemeal approach. Such simplistic approach fails to give a holistic treatment to the 

NPS pollution problem and hence gives ad hoc solutions. Another drawback of these 

studies is that they have mostly ignored the spatial variability of the environmental 

indicators. The spatial variability is so pervasive in agricultural NPS evaluations, that 

ignoring them will bias the results and lead to erroneous policies. The attention paid to 

develop a theory for the integrated modeling method and a statistically consistent 

approach to integrate spatial variability, distinguishes the present study from other 

studies on economic-environmental modeling. 

Realizing the need for an empirical modeling approach, derived explicitly from 

economic theory, that integrates the multidisciplinary models—economic and 
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environmental models— and spatial variability, the study had three main objectives. 

The first objective is to derive theoretical structure for the empirical multiobjective 

decision problem invoking social welfare and utility theoretic principles. The second 

objective is to state the multidimensional resource quality problem as a multiple 

objective problem and state the relevant resource quality attributes. The third objective 

is to verify the empirical applicability of the method for a representative watershed. 

Chapter I gives a general background and sets out the objectives and scope of 

the study. Chapter II reviews issues concerning agricultural NFS pollution assessment 

and multicriteria optimization principles and techniques. A theoretical model was 

developed in Chapter III based on social welfare arguments and multiattribute utility 

theory. The concept of separating hyperplane theorem (second welfare theorem) was 

invoked to show the existence of noninferior solution to the multicriteria problem. An 

appropriate solution method to solve the vector optimization problem is presented. 

Based on the principles of multidisciplinary integration, a conceptual framework is 

suggested to integrate the economic and environmental models. 

In Chapter IV description of the empirical tools, sampling procedures and 

simulation experiment design, data and technology sets, and spatial aggregation 

procedures are provided. A consistent and comprehensive biogeophysical model 

EPIC/WO was used to spatially simulate the prevalent crop production practices over a 

long term (15 years) using actual historical weather. A watershed level resource 

adjustment modeling system constituted the basic agricultural economic decision 

model. The linkage between the physical simulation model outputs and the economic 

behavioral model parameters was provided by the empirical metamodels. 
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The crops and cropping systems prevalent In the study area, vyhlch Is a major 

watershed In the Midwest comprising most of central and eastern Iowa and western 

Illinois, were modeled. The crops included In the analysis are corn, soybeans, oats, 

winter wheat, hay, and sorghum. The environmental indicators modeled are soil 

erosion, nitrate-N in runoff and percolate, and atrazlne in runoff and percolate. Besides 

conventional tillage, soil conserving tillage systems, such as reduced till and no-till 

were modeled to study the tillage / residue Impacts on environmental loading. 

Chapter V summarizes the results of the present study in two sections. The 

first section summarizes the EPIC\WQ model results of long term average values of 

environmental Indicators, briefly describes metamodel development process and the 

estimated metamodels for each of the environmental Indicators. The results from 

extrapolating these metamodels to the population of soils in the study region are also 

shown. The second section elaborates the alternative policy scenarios and the 

economic and environmental impacts and tradeoffs as Indicated by the multiple 

objective scenario analysis. The scenario results are used in quantifying the tradeoffs 

between economic returns, soil quality, groundwater quality, and surface water quality. 

The spatial distribution of various environmental indicators are valuable 

information for targeting the policies to problem areas. The impacts differentiated by 

conservation and tillage systems for alternative crop / rotations will serve as a guide for 

evaluating the alternative BMPs. The response functions (metamodels) for soil loss and 

nutrient and chemical loading can be used to make spatial forecasts within similar 

geographic regions. Long term average nItrate-N concentration in surface water Is 

estimated at 5.3 ppm is close to the actual measurements in the region, 5.6 ppm. 
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Likewise, the predicted long term average leaching losses of nitrate-N is within the 

range of actual measurements from sample wells and near surface aquifers. The mean 

annual concentration of atrazine in surface runoff and percolate were also estimated. 

The results from simulating four different policy scenarios, representing soil 

quality (SI), surface water quality (S2), groundwater quality (S3), and a comprehensive 

scenario addressing soil and water quality jointly (S4) are presented in the second 

section of Chapter V. Major findings and conclusions of the policy simulation exercise 

are: (I) there is significant tradeoff between the economic and environmental goals and, 

even between the environmental goals, therefore a comprehensive analysis with 

reasonable compromise will give an ideal solution; (ii) to achieve a soil loss reduction 

goal of not exceeding 2T soil loss tolerance level, a 21% reduction in net returns is 

inevitable, or equivalently a loss in revenue of about $1.88 per ton of soil saved from 

erosion, however, this policy resulted in increased impairments to groundwater quality; 

and (iii) a multiobjective scenario minimizing soil loss to 2T levels and not allowing 

nitrate-N and atrazine leaching to exceed the baseline resulted in 43% decrease in 

returns, but both surface and groundwater quality improved relative to baseline. 

The model and the results are subject to following limitations. The model 

ignores uncertainty and dynamics, inclusion of uncertainty will produce a more realistic 

tradeoff. Because the data on soil, hydrology, weather, and production practices are 

specific to this watershed, the results are not directly applicable to other areas. But, 

the results could be generalized to areas with similar spatial attributes. Furthermore, 

the results should reflect, in general, sustainable agricultural practices in controlling soil 

erosion and chemical pollution. 
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APPENDIX 1. THE SOLUTION ALGORITHM 

The goal programming technique proposed by Charnes and Cooper (1961) has 

wide spread application for private and public sector problems. Romero (1991) has 

supplied a detailed review of goal programming applications. The application of goal 

programming for public policy problems, specifically the environmental management 

problems, is demonstrated in Charnes et al. (1976) and Panagiotakopoulos (1975). 

The former develops a multidimensional goal programming model to aid resource 

allocation decisions in the U.S. Coast Guard's Marine Environmental Protection 

program, and the later develops a multiobjective framework for regional environmental 

management using goal programming. The goal programming technique is often of 

value in modeling and analyzing multiobjective problems, and it provides a reasonable 

analytical structure to such problems, although it is far from a panacea. Goal 

programming is related to the multiattribute utility theory in that it embodies additively 

separable preference structure (Hannan 1984). 

In goal programming the objective is to achieve certain conditions characterized 

as "meeting the goals as closely as possible", and each such condition is specified in a 

function which penalizes for deviations from the specified target (goal) for the i*** 

objective. In particular, goal programming uses a minimum-distance (from the specified 

goals) notion of best. The goal programming formulation as conceived originally for the 

industrial applications, minimizes the weighted sum of the absolute deviations from the 

specified goals. That is, both positive and negative deviations from the goal are 
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minimized based on weights reflecting the relative importance attached to the 

deviations. 

A major weakness of this traditional goal programming formulation is that a 

"good" becomes a "bad" at a critical threshold level. For example, for a profit 

maximization objective penalizing positive deviation of profit from the goal is equivalent 

to saying that more profit is bad, does not express a rational behavior of economic 

agents. Let the goal for the i*** objective be denoted as G„ then the traditional weighted 

goal programming formulation is: 

min d = Zi^i I G, - f,(x) | s.t. x G X (1) 

where the objective function minimizes the weighted sum of the absolute deviations of 

the outcomes from the specified goals for each objective. Note, 

9^éd = -vl, if f,(x) < G, (1.1) 

= +yt| if f|(x) > G|. 

Thus, the formulation in (1) is identical to the Ap-metric with p = 1 and the goals G, 

replacing the ideal values f,'. The f,' is the optimal solution to the following single 

objective optimization problem, 

f = max {/'(x) I X € X, Vi}. 

The formulation in (1), however, is not an intuitive representation of public 

policy problems involving economic and environmental objectives. Rational agents 

should consider it as "good" if the realized profit exceeded the goal. That is, the agent 
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would be concerned only if the profit fell below the goal. For environmental pollution 

the agent would likely consider it as "good" if the realized level of pollution were less 

than the goal, and would be concerned only if the level of pollution realized exceeded 

the goal. In this sense the formulation in (1) is not an appropriate approximation of 

rational decision making, at least for economic-environmental policy problems. At the 

same time, this formulation is apparently used for quality control and design problems, 

where the consequences of even a small + or - deviation from the desired goals 

(targets) are not permitted. 

We can develop a piecewise linear approximation for the nonlinear goal 

programming problem, and specify the Lagrangean for this problem, deriving 

appropriate first-order conditions. A rationalization of the formulation for environmental 

management problems and the mathematical representation of alternative scenarios will 

conclude this annex. Before specifying the linear approximation, we introduce notation 

defining the negative and positive deviations from the goals. Let the variables d, and 

d|^ represent the negative and positive deviations, respectively, of the i"* objective from 

its goal G,. 

If f,(x) < G, meaning we have less than the desired level of i**" objective, then 

we have a negative deviation, df, such that 

d," = (G, - f,(x)) if f,(x) < G, (2.1) 

= 0 otherwise. 

This can be more compactly stated as 
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d," = max [G| - f,(x); OJ = -min 10; f,(x) - G,]. (2.2) 

Similarity, if f|(x) > G, meaning we have more than the desired level of i"* objective, 

that is we have a positive deviation, d|^, then, 

d,+ = (f,(x) - G,) if f,(x) > G, (3.1) 

= 0 otherwise. 

This can be more compactly stated as 

d/ = max [/,(x) - G,; 01. 

Substituting the definition for the d,'s given in (3.1) and (3.2) into (1) obtain an 

expression for the weighted goal programming problem, that minimizes absolute 

deviations from the stipulated goals, 

min I, (/I, max lf,(x) - G,; 0] + max [0; G, - f,(x)l) 

s.t. X e X. 

The piecewise linear approximation for this problem is 

min 1,(^1 d,- + X,+ d,+), (4) 

s.t. 
^i(x) + d| - d|^ = G|, 

X € X, and the nonnegativity. 

The d,'s are associated with positive coefficients in the objective function, which 

guarantees their status as structural variables, and not the slack variables. Therefore, 

(3.2) 

(1.1) 
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the first line in the "constraint block" is a set of equations, such that their 

corresponding dual variables are not constrained to be nonnegative. Charnes and 

Cooper verify this by solving the dual for a simple goal attainment problem for 

machine-loading example (1961; pp. 219-221). The Lagrangean for this minimization 

problem is 

min X = lA] d," + Af; d,+] + 0, [G, - /,(x) - d, + d,+]. (5) 

The solution follows from Khun-Tucker theorem (Varian 1984). The Khun-Tucker 

conditions are: 

Xk: -«P. (9^1^,) = 0 (5.1) 

df: [A; - <p,) & 0 and d, (X,- - 0,) = 0 (5.2) 

d,+: (X,+ + <|),) a 0 and d,+(,!,+ + <p,) = 0 (5.3) 

if d," > 0 => X, = 0| from (5.2), then, 

d,+ = 0'® and (X+ 0,) > 0; substituting for 0, from above getJI," > -A*.  

Thus the solution to (5) requires and that the product of the deviation 

variables is equal to zero holds for all i (dfdi^ = 0 v i). The later condition, however, 

need not be imposed for all iterations in the solution of the goal programming problem 

since only equivalence at an optimum is required. 

In (5) yl, (-/+) is the relative weight reflecting the importance of the objective, 

and the significance of the positive or negative deviations, that is it penalizes the 

The deviational variables will never both be positive for the same goal since the 
vectors associated with the deviational variables are the negatives of each other. 
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deviations from the goal. In the special case when A] or A* is set to zero the 

formulation is consistent with the formulation of numerous environmental management 

problems. For instance, if A] is set to zero it implies the minimization of positive 

deviations. It makes sense, for the profit objective, to let = 0 meaning profits that 

exceed the goal are not penalized. And for the environmental pollution objective, 

likewise = 0 means that the environmental pollution level less than the goal is not 

penalized. 

A simple algebraic proof demonstrating the equivalence of (5) and (1) is shown 

below (Charnes and Cooper 1977). To simplify the notation let ><, = 1 v i. Define, 

d, = '/2[|G,- ^i(x)| + (G, - (6.1) 

d,+ = %[|G, - f,{x)| - (G, - f,(x))]. (6.2) 

Adding and subtracting the above expressions yields, 

d," + d,+ =|G,- f,(x)| (7.1) 

fiix) + d,- - d,+ = G,. (7.2) 

Hence, the above results confirm that the formulation in (1) can be equivalently stated 

as a piecewise linear approximation (5), along with the nonnegativity conditions for the 

negative and positive deviation variables. 

For many of the modern environmental management problems this piecewise 

linear goal programming formulation, is ideal. It is not that hard to articulate goals for 

the environmental objectives. Environmental policy includes threshold limits for 

resource degradation. Therefore, it is reasonable to have a target that the potential for 
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resource degradation is within threshold limit. For example, in the soil erosion the T-

value (the soil loss tolerance value) specifies that a natural rate of growth of soil is a 

reasonable goal. This approach is consistent with the resource degradation problem 

that is being addressed. Taking the soil erosion example, if erosion exceeds the natural 

rate of growth of soil (T-value) then long term sustainability may be in jeopardy. 

Accordingly, a typical goal might be keep soil losses within the threshold limit. For 

profits, however, it is desirable to achieve more than that stipulated as the goal. 

Consider two objectives the profits, n, and the environmental pollution, z. Let 

the profit goal be, n, and the pollution goal be, z*. The piecewlse linear formulation of 

the goal programming problem is: 

Min [ A; d; + a: d/ + A'd/ + At d/ 1 (8) 

s.t. 
nix) + d„- - d,+ = n 

z(x) + d/ - d/ = z* 

Ax = b 

X, d;, d/, d/, d/, ^A^+A,*)  & 0, 

where the condition three is the feasibility condition in matrix notation, and the last 

condition is for nonnegativity. It is desirable to have profits higher than the goal, and 

pollution lower than the goal, which can be ensured by not penalizing the positive 

deviation from n and the negative deviation of z. The problem in (8) can be 

equivalently stated as maximizing the negative of (8) subject to the conditions stated in 
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(8). Therefore, if the domain (feasible region) is a closed, bounded, and convex set and 

the constraint functions are smooth and concave then there exists unique solution. 

The Lagrangean for the constrained optimization problem in (8) is: 

^ = lA- d„- + K d/ + A; d/ + At d/] + f j „  [n -  n{x)  -  d; + d/1 

//, [z' - z(x) - d/ + d/] 4- r lb - Ax]. (9) 

The solution to this constrained optimization problem follows from Khun-Tucker 

theorem (Varian 1984). The Khun-Tucker conditions are, 

Xk: =0 (9.1) 

d;: (/<„•-//„) & 0 and d„(/t„--//„) = 0 (9.2) 

d/: (X/ + ^ 0 and d/(X/ +//„)= 0 (9.3) 

if d, > 0 =* A^ = n„ from (9.2), then, 

d„+ = 0^° and (X,+ + //„) > 0; substituting for from above get > -A'. 

d,": (/I; - //%) a 0 and d/(/l/ - //,) = 0 (9.4) 

d/: (/I/ +//,)& 0 and d/(X/ +//,)= 0 (9.5) 

if d,+ > 0 =» from (9.4), then, 

d; = 0 and (X/ - //,) > 0, substituting for from above get X/ > -A^^. 

Solution requires that the conditions on the weighting parameter yl, on the positive and 

negative deviations from the goal for each objective, hold. 

The deviational variables will never both be positive for the same goal since the 
vectors associated with the deviational variables are the negatives of each other. 
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For this two dimensional problem, the feasible region, "level sets" for the 

alternative assumptions on /I, ( + /-), and the goals can be represented graphically, 

Figure 13. The level set is the locus of points which returns the same value for the 

objective function, and equivalent of the idea of an isoquant in production. Profits are 

shown on the vertical axis, with n denoting the goal. Pollution is shown on the 

horizontal axis, with z* denoting the goal. Point G represents the "bliss" point. The 

locus of points that satisfy the typical goal programming formulation in (1) is drawn in 

Figure 13 as the parallelogram with dotted lines. The locus of points that satisfy the 

piecewise linear formulation in (8) is the dashed line, and the solid line represents the 

locus of points that satisfy the objective function in which A„*, are set to zero. 

The piecewise linear formulation of the alternative scenarios examined in the 

empirical evaluation is shown below. 

Scenario SI; (soil erosion) 

Min [ A„- d;+ 0 d/ + Od.^+ d._+ ] (10) 

s.t. 
ir(x) + d; - d/ = rr 

eros(x) + d.^- - d.^+ = eros 

Ax = b 

where eros denotes soil erosion and eros* the goal. 
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Figure 13. A graphical representation of level sets for alternative formulations 
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Scenario S2; (surface water quality) 

Min [ A„- d„-+ 0 d/ + Od^+ d^+ + Od^+ d^M (11) 

s.t. 
rr(x) + d„" - d„^ = ir* 

nruf(x) + dnmf" - d^^"' = nruf* 

aruf(x) + d«uf' - d^+ = aruf* 

Ax = b 

where nruf and aruf are runoff of nitrate-N and atrazlne, respectively. 

Scenario S3: (groundwater quality) 

Min [ A; d;+ 0 d/ + Od^h+ >»nich^ + Od^h+ 1 (12) 

s.t. 
/7(x) + d„" - d,+ = n 

nlch(x) + d„teh" - dnteh"" = nIch* 

alch(x) + d.kh' - d.kh^ = alch* 

Ax = b 

where nIch and alch are leaching losses of nitrate-N and atrazlne, respectively. 
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APPENDIX 2. MATHEMATICAL STRUCTURE OF THE REGIONAL LP MODEL 

MAX: OBJ = PROFIT = 

= - È E E EC™,^* • XPRD,^, 
m-1 /«I A"1 

-E E E HCNT, • X2HNT,^, 
«•! 

- E E E • X2HRT,,, 
/"I «•! 

- E E E . X2HCT,,, 
f"1 Ç"1 #"1 

/?C/îD • XCRP 

E * XDP, 

/?//?/M * X//?/M 

E » xf, 
P"1 

. XA„ 
/»-1 

E • XS£/:^, 
V-1 

[Cosf of Production 
Activities] 

{Weed Control Cosfl 

[Return from CRP\ 

[Deficiency Payment] 

[Irrigation Water 
Delivery Costs] 

[Fertilizer Cost] 

[Labor Co5f] 

[Return from Marketing] 
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The CONSTRAINT SET 

a. Corn and corn silage production, for q = 1,2,...,q2 

È E Ê E - E Ë YLDLNT^ . X2HNT,„ 
V"1 m-1 /"I *"1 /"I #"1 

-E E YLDLRT^ * X2HRT,^ "EE YLDLCT^ * X2HCTf^- XSELL, Ss 0 
#"1 /"I «"1 

b. Other Crop Production, for q = 1,2,...,q3 

1 2 4 IS 

E E E E • XPf^D^ - XSELL, & 0 
w»1 m-l /-I *-1 

c. Total Land Constraint 

1 2 4 18 

EE E E - LAND • DUMMY ^ 0 
V"1 m"l /"I *"1 

d. Surface and Ground Irrigation Constraint, for w = 1 

E E E - LAND/RR^ * DUMMY & 0 
m-l /-I At"1 

e. Highly Erodible Land Constraint 

È E E E XPRD^, * PRDCOMP,^, - HLD * DUMMY ^ 0 
V"1 m-l /"I *"1 
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f. Weed Control Treatment, for q= 1,2,...,q2 

(1) No Till Land 

È è Ê E - E X2HNT^ . 0 
V"1 m-1 /«I *•! «•! 

(2) Reduced Till Land 

È E E E XPIUJmi. • flw - E X2HRT„ = 0 
m*1 /"I A"1 #"1 

(3) Conventional Till Land 

1 2 /3 18 3 4 /4 2000 #3 

E E E E «w • E E E E • Sw - E *.2«cr„ - o 
V"1 m-l /"I *#1 V"1 m-l /•! Af-1 «-1 

g. Herbicide Accounting, for e = 1,2,3 

E  £  E  ̂2/y/vr,,„ . /?Ay/vr^ + E  Ê  Ê  »  rhrt̂  

/•I #"1 

+ E Ê Ê * RHCT„ - XCHAC, = 0 
^-1 g»1 #•! 

h. Herbicide Bounds, for e = 1,2,3 

(1) Upper Bounds 

XCHANC, g CHEMMAX 

(2) Lower Bounds 

XCHANC, a CHEMMIN 
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i. Weed Control Strategy 

(1) Sand 3 t2 

È E E X2HNT,,, • SNNT, *E EE * SNRT, 
/•I Ç"1 «•! /"I Ç"1 «"I 

* E  E E  X2HCTf^, * SNCT,- XTEX * SNPCT & 0 
/•I g-1 

(2) Clay and Silt 

E  E E  X2HNT,,, . CLNT, * E  E E  ̂2HRT,^, • CLRT, 
/"I ^«1 #"1 g«1 #"1 

+  E  E E  X2HCT,^, * CLCT,- XTEX * CLPCT & 0 
/•I V"1 #"1 

j. Commodity Program, for q = 1,2,...,q1 

è E E E ^4*, • " (y-ARPFLEX^) • XDP^ & 0 
v-1 m-l /"I 

k. Conservation Reserve 

XCRP - C/?PiL * DUMMY = 0 

I. Government Program, for q = 1,2,...,q, 

XDP^ - RBASE^ • DUMMY £ 0 

m. Irrigation Water Requirement, for w = 1 

E E E * ^DR  ̂  ̂ 0 
m»1 /"I *-1 
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n. Fertilizer Requirement, for g = 1,2,3 

È è Ê E - *'i = 0 
V"1 m"1 /"I /f"l 

0. Conservation Tillage Requirement 

E E E E . DUMMY 5 0 
V"1 m»1 /"I 

p. No Till Requirement 

È E E E - Mxzr • DUMMY A 
y1 m-1 /"I *-1 

q. Soil Erosion Accounting 

È E E E - XEROSION = 0 
V"! /n*1 /"I *"1 

r. Labor Requirement, for n = 1,2,...,7 

E * Ci-ARPFLEX^,) . XD/»,, + E E E X2HNTF^, * LBWCNT„ 
f-l 9-1 «"1 

+ E Ê Ê • LBWCRT„, +E Ê É # LBWCCT^ 
/"I Ç"1 «"1 /•! ««1 

+ LBCRP„ * XC/?P - XL„ =0 

s. Flexibility Constraints on Production Levels, for q = 1,2,...,18 
(1) Upper Bound 

XSELL^ - MAXPROD^ * DUMMY & 0 

(2) Lower Bound 

XSELL^ - MINPROD^ « DUMMY a 0 
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t. Crop Acreage Accounting, for q = 1,2,...,18 

(1) No Till 

E E E E • XPRD^ - XCROPACNT, = 0 
v-l m•^ /"I *"1 

(2) Reduced Till 

E E E E 6̂,* • - XCROPACRT^ = 0 
m-1 /•! *»1 

(3) Conventional Till 

1 2 # 18 3 4 /* 2600 

E E E E «W • * E E E E «w • 
v-l m-1 /-I *"1 y«1 m«1 /•! *"1 

- XCROPACCT, = 0 

u. Nonnegativity Requirements 

S 0 XSELL, S 0 
s 0 XCRP S 0 
s 0 XDP, s 0 
s 0 XIRRA s 0 
s 0 XF a: 0 

(DP, ^ 0 
XCRP ^ 0 XF 2: 0 XL. SO 

INDICES, VARIABLES, AND TABLES 

(i) Index Sets 
a - Producing areas 
e - Chemicals 
f - Rotational restrictions on weed control strategies 
g - Fertilizers 
y(i) - Current policy 
j - Tillage practices 
k - Crop rotations 
m - Conservation practices 
n - Labor purchasing periods 
q - Endogenous crops 
s - Weed control strategies 
V - Irrigation practice 
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(ii) Variables 

XPRDv^jk : Production activities by k rotations, m conservation practices, v irrigation 
metliods, and j tillage practices (acre) 

X2HNTf, No till weed control strategy activities (acres) 

X2HRTfy : Conservation till weed control strategy activities (acres) 

X2HCTf, : Conventional till weed control strategy activities (acres) 

XCRP CRP enrollment activity (acres) 

XDPg Deficiency payment activities (acres) 

XCHAC Chemical constraining activity (lbs. active ingredient) 

XIRRA Irrigation water supply activities (units) 

XF Purchasing activity for fertilizer (lbs) 

XL, Labor supply activities (hrs) 

XSELL, ; Crop sell activity for endogenous crops (crop units) 

XCROPACNT, No till crop acreage accounting activities 

XCROPACRT, Reduced till crop acreage accounting activities 

XCROPACCT, Conventional till crop acreage accounting activities 

(iii) Tables 

CPRD^ Cost of production activities by k rotations, m conservation practices, v 
irrigation methods, and j tillage practices ($/acre) 

HCNT,„ Cost of no till herbicide strategy ($/acre) 

HCRT,2, Cost of no till herbicide strategy ($/acre) 

HCCT^ Cost of reduced till herbicide strategy ($/acre) 

RSELL, Return per unit of selling crop 

RCRP, Returns per acre from enrollment in CRP ($) 

RDPp, Deficiency payment from enrollment on acre of established base for each 
program crop p ($) 

RFERTp Fertilizer prices ($/lb) 

RIRRAw, ; Costs of water and water delivery ($/acre foot) 

RLABO. Costs of purchased labor ($/hour) 
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YLD, qvmjfai 

YLDLNT,,. 

YLDLRT^ 

YLDLCT^ 

RHNT^,. 

RHRT ««2m 

RHCT^ 

SNNT. 

SNRT «2» 

SNCT. «3# 

CLNT, 

CLRT, •2> 

CLCT, •2* 

SNPCT. 

CLPCT. 

CORNCHPCT. 

Crop yield for crop q, rotation k, under conservation practice m, irrigation 
practice v, and tillage practice j. Pre-adjusted for relative share of crop in 
rotation (bu/ac) 

Cost of production activities by k rotations, m conservation practices, v 
irrigation methods and j tillage methods ($/acre) 

Yield loss under conservation till weed control strategy s2 (bu/ac) 

Yield loss under conventional till weed control s3 (bu/ac) 

Application rate of chemical e under no till weed control strategy si (lbs 
of active ingredient) 

Application rate of chemicals under reduced till weed control strategy 
(chemicals, weed control strategies under no till, current pa) application 
rate of chemical e under no till weed control strategy si (pounds of active 
ingredient) 

Application rate of chemical e under conventional till weed control strategy 
s3 (lbs of active ingredient/ac) 

Sand texture indicator, one if weed control activity s is specified for use 
on sandy soils only, zero if specified for silt or clay soils only and % of 
sandy soil acres in PA if specified for sand, silt, or clay 

Sand texture indicator, one if weed control activity s is specified for use 
on sandy soils only, zero if specified for silt or clay soils only and % of 
sandy soil acres in PA if specified for sand, silt, or clay 

Sand texture indicator, one if weed control activity s is specified for use 
on sandy soils only zero if specified for silt or clay soils only and % of 
sandy soil acres in PA if specified for sand, silt, or clay 

Clay texture indicator, one if weed control activity s is specified for use on 
clay or silty soils only, zero if specified for sandy soils only and % of silt 
and clay soil acres in PA if specified for sand, silt, or clay 

Clay texture indicator, one if weed control activiw s is specified for use on 
clay or silty soils only , zero if specified sandy soils only and % of silt and 
clay soil acres in PA if specified for sand, silt, or clay 

Clay texture indicator, one if weed control activity s is specified for use on 
clay or silty soils only, zero if specified for sandy soils only and % of silt 
and clay soil acres in PA if specified for sand, silt, or clay 

Acres of clay or silty soils as a percent of total acres in PA a 

Acres of clay or silty soils as a percent of total acres in PA a 

Use of herbicide e on corn and corn silage expressed as a minimum % of 
total herbicides (lb a.i.) applied on corn and corn silage 
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SORGCHPCT. 

SEQNROT^b 

CHEMMAX» 

CHEMMIN» 

B2, 

B '3<0» 

B4, 

B5, 

qllo 

ARPFLEX,,. 

PRDCOMPhn.jb 

EROSLjb 

LAND, 

LANDIRR^ 

HLDL 

CPRL. 

RBASEp, 

WRjnnyj 

WDR_ 

FRgdmyj 

MXRT. 
MXZT. 

Use of herbicide e on sorghum and sorghum silage expressed as a 
minimum % of total herbicides (lb a.i.) applied on sorghum and sorghum 
silage 

% of rotations occupied by cover crop sequences 

Use of herbicide e on corn and com silage expressed as an absolute 
maximum (lbs a.i.) 

Use of herbicide e on com and com silage expressed as an absolute 
minimum (lbs a.i.) 

Percent of com, corn silage, sorghum and sorghum silage in each rotation 
k followed by two i 
silage or soybeans 
k followed by two or more years of com, com silage, sorghum, sorghum 

ybe 

Percent of corn, com silage, sorghum silage in each rotation k followed by 
one year only of com, com silage, sorghum, sorghum silage, or soybeans 

Percent of com, com silage, sorghum and sorghum silage in each rotation 
k followed by some other crop 

Percent of program crop q in each rotation k 

Percent of crop q in rotation k 

Acreage reduction program set aside rate (%) 

One if the combination of tillage practice j, conservation practice m, and 
irrigation type v is in compliance on land m highly erodible land group h, 
0 oBierwise 

Erosion levels caused by production activities (tons/acre) 

Total land in producing area, available for production and government 
programs (acres) 

Land irrigated with surface water and groundwater (acres) 

Land in each of the h highly errodible land groups (acres) 

Conservation reserve retirement level (acres) 

Base acreage level of program crop p (acres) 

Water rate for production activities (acre feet) 

Acre feet of water delivered to cropland per acre feet removed from source 
-reflects delivery losses 

Fertilizer rate for production activity (Ibs/ac) 

Maximum conservation tillage (acres) 
Maximum no till acres 
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MXCSUL, 

TERR, 

COVCRAC. 

LBDP. 

LBWCNT^U 

LBWCRT.2. 

LBWCCT^ 

LBCRP. 

MAXPROD, 

MINPROOD, <p 

MAXCACRE„ 

MINCACRE, V 
DUMMY, zyin 

Minimum acres of no till and conservation till for carbons tillage runs 

Minimum terraced (acres) 

Target acreage of cover crops (acres 

Labor usage rate during month n for cover cost component of def. payment 
activities Qirs/ac) 

Labor usage rate during month n for weed control activities 

Labor usage rate during month n for weed control activities 

Labor usage rate during month n for weed control activities (hrs/ac) 

Labor usage rate during month n for cover cost component of conservation 
reserve program activities (hrs/ac) 

Upper limit on crop production (cwt, bu, tons, or bales) 

Lower limit on crop production (cwt, bu, tons, or bales 

Upper limit on crop acreage (acres) 

Lower limit on crop acreage (acres) 

PA and policy and scenario dununy dimensions 
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